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Microglia are resident innate immune cells of the CNS, and 
have an important role in maintaining CNS integrity and 
function1. They are involved in removing apoptotic neurons, 

refining synaptic connectivity and providing trophic support for 
memory and motor learning2,3. In addition, microglia play a role in 
the development and progression of neurological and psychiatric dis-
orders, including Alzheimer’s disease, amyotrophic lateral sclerosis, 
schizophrenic psychoses and mood disorders4–7. Thus, the identifica-
tion of mechanisms that regulate microglial homeostasis and func-
tion may provide the means to manipulate these cells for therapeutic 
purposes. Over the last two decades, microglial ontogeny, phenotypic 
heterogeneity and responses to CNS pathology have been extensively 
studied in rodents8–15. However, much less is known about human 
microglia (huMG). Comparative studies of the transcriptional net-
work revealed overall similarity in the transcriptomic landscapes 
of human and mouse microglia16,17. Nonetheless, these studies also 
demonstrated species-specific patterns of gene expression, and differ-
ences in the responses of human and murine microglia to aging16,17. 
The heterogeneity of microglia that has been described for the mouse 
brain7,14 has so far not been replicated in humans. It is also unclear 
how human and mouse microglia compare on a phenotypic level.

So far, the phenotypic characterization of huMG has mainly 
relied on immunohistochemical analysis of postmortem brain tissue,  

fluorescence flow cytometric analysis of isolated microglial cells 
or in vitro culture of huMG18–21. Among the limitations of these 
approaches are the phenotypic changes induced by cell culture16,19, 
the high autofluorescent background of postmortem tissue and the 
restrictions in the number of markers that can be simultaneously 
investigated in one measurement (commonly less than 20). In addi-
tion, due to the lack of a validated protocol for cryopreservation, 
flow cytometric analysis of huMG has been restricted to immedi-
ate measurements of acutely isolated cells, which can result in batch 
effects and contribute to erroneous interpretations of data.

In this study, we developed a method to deep profile the immune 
phenotype of small samples of huMG at the single-cell level. The 
protocol allows for simultaneous measurement of multiple samples 
from different donors and brain regions, and at the same time for 
comparison with cells from other compartments (for example, cere-
brospinal fluid (CSF) and peripheral blood). We isolated huMG 
from different regions of postmortem brain tissues and from fresh 
brain biopsies following an established protocol. Peripheral immune 
cells were freshly isolated from blood and CSF. The isolated cells 
(both huMG and peripheral immune cells) were fixed and stored 
using a protocol for long-term cryopreservation. Subsequently, 
cryopreserved huMG and peripheral immune cells were simulta-
neously profiled by multiplexed mass cytometry (CyTOF) using  
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barcoding technology. These powerful methodologies allowed accu-
rate and unbiased analysis of an unprecedented number of markers 
at the single-cell level. Our results reveal a unique phenotypic signa-
ture of huMG that distinguishes them from other mononuclear cells 
in the CSF and peripheral blood. Using a hybrid Cytobank- and R/
Bioconductor-based data processing and analysis workflow, we pro-
vide evidence for the heterogeneity of microglia in the human brain.

Results
Mass cytometric analysis of cryopreserved human postmortem 
brain microglia. To compare the different phenotypes of CNS-
resident microglia and peripheral immune cells, we simultaneously 
profiled peripheral blood mononuclear cells (PBMCs), immune cells 
from the CSF and huMG in the same run. The experiment is out-
lined in Fig. 1a. In summary, huMG were isolated from postmortem  
brain tissue of different brain regions as described previ-
ously19. Isolated huMG were then cryopreserved at − 80 °C using  

paraformaldehyde-containing stabilizing buffer22. Of note is that 
classical cryopreservation using DMSO failed to cryopreserve the 
isolated huMG. Up to 3 ×  104 live CSF-derived cells were CD45-
barcoded with 89Y-CD45 antibody (89Y-CD45+)23 and subsequently 
pooled with PBMCs (89Y-CD45−) from the same individual. The 
CSF-PBMC pooled samples were then cryopreserved using the same 
protocol that was applied to the huMG. To minimize the run-to-
run variation and to facilitate the comparison of cellular phenotypes 
from different compartments and individuals, we thawed huMG and 
CSF-PBMC samples and performed intracellular mass-tag barcod-
ing using palladium (Pd) isotopes. Each sample pool consisted of two 
CSF-PBMC sample pairs (two individuals with CSF and PBMC each) 
and 18 huMG samples (from up to five brain regions of 4–5 donors) 
(Supplementary Table 1). The pooled samples were split equally and 
stained with two different antibody panels (35 antibodies/panel)  
(Supplementary Tables 2 and 3). Panel A was designed to encom-
pass the major circulating immune cell subsets (T and B cells, 
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Fig. 1 | Simultaneous high-dimensional immune phenotyping of human microglia, and mononuclear cells from blood and CSF. a, Schematic 
representation of sample processing and CyTOF measurement. Blood and CSF were collected from the same individuals. Human microglia (huMG) 
were isolated from subventricular zone (SVZ), thalamus (THA), cerebellum (CER), temporal lobe (GTS), and frontal lobe (GFM) from nine biologically 
independent donors. One final barcoded and pooled sample consists of 18 huMG samples and 2 PBMC–CSF sample pools. Mixed samples were 
equally divided and stained with two panels of metal-conjugated antibodies and acquired on the CyTOF instrument. b, Representative two-dimensional 
projections of single-cell data generated by t-SNE of biologically independent samples: PBMCs (n =  4), CSF cells (n =  4) and brain mononuclear cells 
(n =  36). Each dot represents one cell. The color spectrum represents expression of P2Y12 (red, high expression; blue, no expression). P2Y12

+ cells were 
gated as huMG (green) and P2Y12

− cells were gated as different circulating immune cells. c, Heat map and cluster analysis of all samples on the basis 
of the mean expression of 57 markers (Panel A plus Panel B). Similarities between PBMCs (blue), CSF cells (orange) and huMG (green), as well as the 
similarities between huMG from different brain regions (SVZ, bright green; THA, gray; CER, red; GTS, bright blue; GFM, dark blue) samples and expression 
levels are indicated by dendrograms. Heat colors of expression levels have been scaled for each marker individually (to the 1st and 5th quintiles) (red, high 
expression; blue, low expression). d, Mean signal intensity levels of P2Y12, TMEM119, EMR1 (F4/80), CD64, TREM2, CD44, CCR2, CD45, CD14 and CD16 
staining in PBMCs, CSF cells and huMG from different brain regions (black lines show mean values of the datasets).
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monocytes, natural killer (NK) cells) and microglia using prolif-
eration markers, activity-related markers, chemokine receptors 
and cell subset markers, including P2Y12, IRF4, IRF8, CD45, CD3, 
CD62L, CD19, HLA-DR, CD56, cyclin A and B1 and Ki-67. Panel 
B was designed to analyze the phenotypes of huMG and the innate 
immune cell subsets using 35 antibodies, including TMEM119, 
CD172a, CD279 (PD-1), CD274 (PD-L1), arginase-1, CCR7, CD44, 
CD18 and CD32. Finally, barcoded and pooled samples were simul-
taneously acquired on a CyTOF instrument.

To capture and visualize all mononuclear cell subpopulations in 
a single two-dimensional (2D) map, we first performed an unsu-
pervised high-dimensional data analysis using the t-distributed 
stochastic linear embedding (t-SNE) algorithm24,25 on the com-
mercially available analysis platform Cytobank (www.cytobank.
org) (Fig. 1b). The t-SNE maps showed a unique and distinct cluster 
of the huMG samples (Fig. 1b, green gate). This cluster expressed 
for the microglial marker, P2Y12, and on the basis of previous 
work12,20 was used to identify human microglia (huMG). Notably,  
P2Y12-negative cells detected in the brain samples (Fig. 1b) showed 
similar t-SNE coordination in clusters that overlapped with circu-
lating immune cells in the peripheral blood and CSF (Fig. 1b). A 
unique and distinct cluster of huMG was also identified without the 
markers traditionally used to identify microglia (for example, CD11b 
and CD45) when TMEM119 antibody was used as a huMG marker 
(Panel B, Supplementary Fig. 1a). Importantly, virtually all (> 99.9%) 
of P2Y12

+ cells expressed TMEM119, and > 99.4% of TMEM119+ 
cells expressed P2Y12 in the FACS analysis (Supplementary Fig. 1b,c).  
To extend the phenotypic comparison between PBMCs, CSF cells 
and huMG, we manually gated CSF and blood mononuclear cells 
(i.e. monocytes, CD19+ B cells, dendritic cells, CD56dim/+ NK cells, 
CD3+ T cells) and huMG (P2Y12

+ or TMEM119+) clusters on the 
t-SNE map. On the basis of the mean signal intensity of all 57 mark-
ers analyzed (Panel A plus Panel B), huMG clustered distinctly 
from all cell subsets in blood and CSF (Fig. 1c). Specifically, huMG 
expressed higher mean levels of P2Y12, TMEM119, EMR1 (F4/80), 
CD64 and TREM2, whereas expression levels of CD44, CCR2, 
CD45, CD14 and CD16 were much lower in huMG compared with 
the PBMCs and CSF cells (Fig. 1d). In one huMG sample (out of 36 
samples), we could detect an expression of CD19 or CD135 (Fig. 1c).  
However, these cells were positive for markers used to identify 
microglia such as P2Y12, TMEM119, EMR1, CX3CR1, CD11c and 
CD115. But they were negative for all classical B cell markers such as 
CCR7, CD62L, CD37 and CD40, as well as CD44, a general marker 
for peripheral immune cells. Therefore, a contamination of B cells 
or peripheral immune cells in this particular sample is improbable. 
Nevertheless, this rare expression of CD19 and CD135 deserves fur-
ther investigation, which requires additional markers. CSF cells 
expressed comparatively high levels of the cytokines IL-6 and TNF-α  
(Supplementary Figs. 2 and 3). Interestingly, in all cell subsets, periph-
eral blood cells clustered separately from CSF cells (Fig. 1c). In sum, 
the unsupervised, t-SNE-based dimensionality reduction effectively 
demonstrated phenotypic segregation of huMG from circulating 
immune cells with or without the use of classical cell lineage markers, 
such as CD45, CD11b, CD3, CD19 and CD56 (Panel B, Supplementary  
Fig. 1). These tools allow large-scale collection and simultaneous 
immune profiling of huMG and circulating immune cells.

Differential immunophenotypes of circulating myeloid cells and 
huMG. Murine tissue-resident macrophages, including microg-
lia, and circulating monocytes have distinct transcriptomic and 
enhancer landscapes that are regulated by the local microenviron-
ment26. At the protein expression level, murine microglia can be 
separated from circulating monocytes and other tissue-resident 
macrophages by clustering27. Here, we observed that all P2Y12- or 
TMEM119-expressing huMG also co-expressed HLA-DR and 
CD11c (Supplementary Fig. 4a,b). We therefore performed a  

comprehensive t-SNE analysis of HLA-DR+CD11c+ huMG and cir-
culating myeloid cells (HLA-DR+CD11c+) from blood and CSF. The 
results shown in Fig. 2a indicate that huMG have a phenotype that 
distinguishes them from circulating myeloid cells in blood and CSF. 
We further analyzed these clusters at the level of marker expression 
on a donor-by-donor, compartment-by-compartment and brain 
region-by-region basis (Fig. 2b,c and Supplementary Figs. 2 and 3).  
On the basis of the expression levels of 55 investigated markers 
(Panel A plus Panel B, excluding CD3 and CD19), the heat map 
visualization in Fig. 2b revealed a distinct phenotypic signature of 
huMG, as well as significant phenotypic differences between the 
myeloid cell populations in blood and CSF from the same donors. 
P2Y12 and TMEM119 expression was highly enriched in huMG and 
was absent from myeloid cells in blood and CSF (Fig. 2b,c).

Next, we compared the immunophenotypic signatures of post-
mortem huMG with microglia isolated from temporal lobe biop-
sies (fresh huMG) (Supplementary Table 4). The biopsies were 
obtained from three patients during the resection of brain tissue 
for the treatment of epilepsy, analogous to the procedure recently 
described for transcriptomic and epigenetic profiling of huMG16. 
The epileptic focus with the strongest epileptogenic activity was 
removed before the surrounding tissue was used for microglia iso-
lation. On the t-SNE map, postmortem huMG clustered together 
with fresh huMG and displayed a comparable immunophenotypic 
signature (Fig. 3a), underscoring the validity of using postmor-
tem huMG for immunophenotypic profiling in health and disease. 
However, we did observe differences in the levels of signal intensity, 
in particular for IRF8 and P2Y12, and to a lesser degree for CD11b, 
CD68 and HLA-DR as well (Fig. 3b,c and Supplementary Fig. 5a,c).  
The expression levels of TMEM119 were not different between 
postmortem huMG and fresh huMG (Fig. 3c). Interestingly, we 
detected IRF8hiP2Y12

+ cells (G1, Fig. 3a,b) at higher frequencies in 
fresh huMG than in postmortem huMG (Fig. 3c). Removing IRF8 
and P2Y12 from embedding parameters resulted in decreased phe-
notypic differences between postmortem huMG and fresh huMG 
(Fig. 3d,e and Supplementary Fig. 5b), suggesting that IRF8 and 
P2Y12 are key markers that determine the difference between the 
two sources of huMG. Of note, these differences may result from 
postmortem changes and/or effects of epilepsy on the tissue.

Expression of mannose receptor C-type 1 (CD206) in huMG. 
We observed variation in the expression of mannose receptor 
C-type 1 (MRC1 or CD206) in P2Y12

+ cells across different brain 
regions (Fig. 4a,b). CD206 was previously suggested as a marker 
for M2 macrophages and perivascular macrophages in the human 
CNS28. However, recent data obtained from bulk RNA sequencing 
showed that huMG also express low levels of CD206 mRNA17,18. 
Moreover, activated murine microglia express CD206 after spinal 
cord injury29. In humans, it is unclear whether the expression of 
CD206 is confined to a subpopulation of microglia, and what the 
expression levels of CD206 are at the single-cell level. The low-
dimensional t-SNE map of P2Y12

+ cells derived from up to five 
brain regions from nine different donors showed a small cluster 
of CD206highCD163+CD14+ cells (G3), which highly expressed 
HLA-DR, CD68 and CD11b (Fig. 4c,d), suggestive of perivascular 
macrophages (pmΦ ). Interestingly, we observed low expression 
of P2Y12 on this population (Fig. 4c,d and Supplementary Fig. 6a), 
which has not been reported before12,20. However, the expression 
levels of P2Y12 were much lower than for huMG (Supplementary 
Fig. 6a). The cluster of pmΦ  could not be detected when antibod-
ies against CD163, CD14, CD68 and CD11b were not included in 
the staining panel (Panel B; Supplementary Fig. 7a). Interestingly, 
we also detected other clusters of CD206lowCD163−CD14−P2Y12

high 
cells (G2 and G3; Fig. 4c,d). The CD206low huMG did not express 
CD163, and showed lower expression levels of HLA-DR, CD68, 
CD33, CD11b and CD45 compared with pmΦ  (Fig. 4c,d). 
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Fig. 2 | Comparative phenotypic analysis of huMG and peripheral myeloid cells. a, Representative t-SNE projection of multidimensional single-cell 
phenotypes of HLA-DR+CD11c+ myeloid cells detected in blood (PBMCs, n =  4 biologically independent samples), CSF (n =  4 biologically independent 
samples) and brain (huMG, n =  36 biologically independent samples). The color spectrum represents an expression level of P2Y12 (red, high expression; 
dark blue, no expression). The bottom image shows an overlaid t-SNE plot of all cells from all three compartments (blue, blood; orange, CSF; and green, 
brain huMG). b, Heat map cluster demonstrates the mean expression of all 55 markers (Panel A plus Panel B) and relationships between blood (blue), CSF 
(orange) and brain myeloid cells (SVZ, bright green; THA, gray; CER, red; GTS, bright blue; GFM, dark blue). Heat colors have been scaled per marker (red, 
high expression; blue, low expression). c, Mean expression levels of selected markers in blood, CSF and brain myeloid cells (black lines show mean values 
of the datasets).
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However, CD206low huMG showed a higher expression level 
of CX3CR1 than pmΦ  (Fig. 4d). In Panel B, the clusters of 
CD206low huMG were also identified (Supplementary Fig. 7a,b). 

Interestingly, we observed regional heterogeneity in the distribu-
tion of CD206low huMG. Quantification of the manually gated 
populations G1–G3 on the t-SNE display revealed that CD206low 
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GTS–huMG, n =  10 biologically independent samples; orange, postmortem GFM–huMG, n =  9 biologically independent samples; blue, huMG from fresh 
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correction. b, Representative reduced-dimensional single-cell t-SNE illustrations of P2Y12

+ huMG from biologically independent samples of GTS (n =  10), 
GFM (n =  9) and fresh biopsies (n =  3). The color spectrum represents an expression level (red, high expression; dark blue, low expression). c, Mean 
expression levels of selected markers showing differential marker expressions between the two gates (G1 and G2 in a) in huMG from biologically 
independent samples of GTS (green, n =  10), GFM (orange, n =  9) and fresh biopsies (blue, n =  3). *P <  0.05, **P <  0.01, ***P <  0.001, ****P <  0.0001, 
one-way ANOVA with Bonferroni correction. d, An overlaid high-dimensional plot (embedding without P2Y12 and IRF8) of all cells from all biologically 
independent samples (green, GTS, n =  10; orange, GFM, n =  9; blue, fresh biopsies, n =  3). No distinct cluster was detected, thus differences between 
samples are minute. e, Representative reduced-dimensional single-cell t-SNE illustration of P2Y12

+ huMG from biologically independent samples of 
GTS (n =  10), GFM (n =  9) and fresh biopsies (n =  3). The color spectrum represents an expression level of CD45, HLA-DR, CD11b and CD68 (red, high 
expression; dark blue, low expression).
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huMG were more frequent in temporal lobe (gyrus temporalis 
superior, GTS) and frontal lobe (gyrus frontalis medius, GFM) 
compared with other brain regions, whereas CD206high pmΦ  were 

equally distributed across the human brain (Fig. 4e). High pro-
portions of CD206low huMG in temporal and frontal lobes were 
confirmed using Panel B (Supplementary Fig. 7b). Of note, such 
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low expression of CD206 on P2Y12-expressing cells failed to 
be detected by flow cytometry due to the high autofluorescent 
background of postmortem huMG (Supplementary Fig. 6b). The 
results underscore the power of the multidimensionality of mass 
cytometry in attempts to identify microglia subpopulations in the 
human brain.

Heterogeneity of human postmortem brain microglia. Recently, 
region-dependent microglial diversity was detected in the mouse 
brain on the basis of transcriptional profiling using microar-
rays14. Here, we studied the phenotypic signatures of huMG at the 
single-cell level, and addressed the issue of regional heterogeneity 
of human brain microglia by mass cytometry. Our initial results  
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suggested that huMG from the subventricular zone (SVZ) display a 
phenotype that is distinct from huMG in other brain regions (Figs 1c 
and 2b). To extend these observations, we performed a comprehen-
sive cluster analysis using t-SNE embedding of the entire data set, 
including all brain regions and all donors (36 samples; Fig. 5a–c).  
To quantify phenotypic differences and to fully harness the multi-
dimensional nature of the mass cytometry data, we combined the 
t-SNE algorithm with probability binning30. The binning model 
was created on collapsed data from all samples (that is a concat-
enated flow cytometry standard (FCS) file) by recursively splitting 
the events at the median values along the two t-SNE dimensions to 

yield 512 microgates (binning grids) at sufficiently high resolution 
(Fig. 5d,e). We used the earth mover’s distance (EMD) metric31 to 
quantify cell-distributional differences between huMG of samples 
from different donors and brain regions (Fig. 5f). The EMD score 
between most of the huMG in the SVZ (six of eight investigated 
donors) was very low, suggesting strong similarity between the SVZ 
samples (brain region) rather than donor-specific huMG phenotype 
(see also Supplementary Table 5). Using this methodology, huMG in 
the SVZ were confirmed to be phenotypically distinct from huMG 
in other brain regions (Fig. 5f). However, we also observed donor-
dependent phenotypic variability (Fig. 5a and Supplementary  
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Fig. 8a–c). In particular, donor number 6 revealed a distinct cluster 
of huMG that we further characterized as a CD64hiEMR1hi popula-
tion (Supplementary Fig. 8b,c). Removing this donor or the out-
lier markers (CD64 and EMR1) before t-SNE embedding did not 
change our results regarding the regional heterogeneity of huMG 
(Supplementary Fig. 8d,e). We therefore included the outlier donor 
(number 6) and the outlier markers (CD64 and EMR1) in all further 
analyses so as to embrace the biological variability of huMG.

To determine and visualize frequencies of differential phenotypes 
between brain regions, we performed bin-wise, intrasubject, mass 
univariate statistical testing32 using the Skillings–Mack Friedman-
type nonparametric one-way repeated measures statistic33 to 
account for the non-normality of cell frequency data, the incomplete 
block design (namely, unequal number of brain regions between 
investigated donors) and the small sample sizes. The results of the 
group-level analysis are presented as a single statistical t-SNE map  
(Fig. 6a,b and Supplementary Fig. 8f,g), in which areas of connected 
bins exceeding a given significance threshold are automatically 
gated to reveal cellular phenotypes accounting for the detected dif-
ferences. Using this analysis, we identified four huMG subsets that 
showed differential abundance in different brain regions (subsets 1, 
2 and 3: P <  0.0001; subset 4: P =  0.0014, Skillings–Mack test with 
controlled false discovery rate (FDR)) (Fig. 6c–e). We observed that 
the SVZ and thalamus (THA) contain similar huMG phenotypes 
(subset 1), which are virtually absent from the other brain regions 
(Fig. 6e–g and Supplementary Fig. 8f,g). Temporal lobe and fron-
tal lobe are enriched in different huMG phenotypes (subsets 2–4). 
Interestingly, subset 4 appears to be more abundant in the temporal 
lobe than in the frontal lobe (Fig. 6e–g). The profile of huMG in 
the cerebellum (CER) was distinct from the other brain regions and 
revealed low abundance of all subsets (Fig. 6e–g). Similar regional 
differences were also detected when antibody Panel B was applied to 
the samples (Supplementary Figs. 9 and 10). Finally, we confirmed 
our findings using the differential abundance hypersphere analysis 
in original multiparameter space with the cydar/edgeR framework34 
(Supplementary Figs. 8h and 9c).

Region-dependent phenotypic signatures of huMG. Next, we fur-
ther characterized the phenotypic signatures of the huMG regional 
subsets identified in Fig. 6. The four subsets were automatically 
gated and profiled for marker expression. The phenotypic signature 
of each subset was extracted (Fig. 7a and Supplementary Fig. 10). 
Subset 1, which was observed in higher proportions in the SVZ and 
THA, showed higher expression of CD11c, CD195 (CCR5), CD45, 
CD64, CD68, CX3CR1, EMR1 and HLA-DR compared with the 
other subsets (Fig. 7a,b and Supplementary Fig. 10b,d). Moreover, 

subset 1 of huMG expressed higher levels of the proliferation mark-
ers cyclin A, cyclin B1 and Ki67 (Supplementary Fig. 8i). These fea-
tures suggest a more activated state of microglial cells in the SVZ 
and thalamus. Subsets 2 and 3, which were more abundant in GTS 
and GFM, expressed higher levels of CD206 compared with the 
other subsets (Fig. 7a,b and Supplementary Fig. 10b,d). Although 
the two subsets were generally very similar, subsets 2 and 3 differed 
in their expression of CD64 and EMR1 (Fig. 7a,b). Interestingly, we 
observed a positive correlation between donor age and the expres-
sion of CD11b, CD68, CD64, HLA-DR and TREM2 in huMG from 
different brain regions, although the results need to be interpreted 
with caution given the small sample size (Supplementary Fig. 11). 
Importantly, we identified CD11c, CD206, CD45, CD64, CD68, 
CX3CR1, HLA-DR and IRF8 as key markers for the detection of 
huMG regional heterogeneity (Fig. 7b). To test the feasibility of 
using these eight molecules in a reduced binary panel and con-
ventional gating, we applied sequential (that is, Boolean) gating 
strategies to identify the four putative subsets on the basis of the 
expression of only these eight markers (Fig. 7c). Then, we com-
pared the outcome frequencies of each Boolean-gated subset with 
the frequencies obtained by the gates in the t-SNE plot shown 
in Fig. 6. The frequencies of subsets 1, 2 and 3 were comparable 
between the two approaches (subset 1: rho/r2 =  0.87/0.91; subset 2:  
rho/r2 =  0.85/0.78; subset 3: rho/r2 =  0.87/0.77, Fig. 7d), whereas 
the frequencies of the lower-abundant subset 4 were slightly differ-
ent between the two types of analysis (subset 4: rho/r2 =  0.72/0.34,  
Fig. 7d). We confirmed the suitability of these eight markers to 
identify huMG subsets 1, 2 and 3, whereas the detection of the 
rare subset 4 remained challenging. Next, we tested the robustness 
of the eight defined markers for identifying regional huMG het-
erogeneity using the flowType/RchyOptimyx pipeline35 (Fig. 7e). 
Populations with highest –log2(P) significance scores highlight 
CD206, CD45, CD64, CD68 and HLA-DR as the most important 
markers to target region-specific huMG phenotypes in a manual 
gating strategy.

Finally, we performed FACS analysis to test the feasibility of iden-
tifying regional heterogeneity of huMG (Supplementary Table 4)  
by a more widely available technology. We were able to detect 
phenotypic differences of huMG between regions (SVZ versus  
GTS and GFM) on the basis of the FACS analysis of CD45, 
CD64, CD68 and HLA-DR expression (Fig. 8a). Furthermore, we 
detected a cluster analogous to CyTOF subset 1 (Figs. 6 and 7) of 
huMG (Fig. 8b, red gate). Importantly, the frequency of this SVZ-
enriched subset was comparable between FACS analysis using four 
markers (CD45, CD64, CD68 and HLA-DR) and the CyTOF mea-
surement (Fig. 8c).

Fig. 7 | Region-dependent huMG phenotypes. a, Radar chart (or snail plot) shows marker expression levels of each huMG subset (subset 1, red; subset 2, 
orange; subset 3, green; subset 4, purple). The snail shell represents transverse (perpendicular) axis mapping marker expression levels on an exponential 
scale. Each line denotes each sample (n =  36 biologically independent samples). The right image demonstrates the automated subset gating on the 
t-SNE map (subset 1, red; subset 2, orange; subset 3, green; subset 4, purple; remaining cells (cells – subsets), all blue dots). b, Selection of eight markers 
defining huMG subsets (n =  36 biologically independent samples). Median bin expression levels are shown for each subset and marker in box plot 
representation (subset 1, red box, n =  66 bins; subset 2, orange box, n =  32 bins; subset 3, green box, n =  33 bins; subset 4, purple box, n =  7 bins; remaining 
cells (cells – subsets), blue box, n =  374 bins). Blue lines indicate phenotype-defining cutoffs, used to identify the subsets by conventional (multivariate or 
hierarchical) gating. Box center and limits represent median, upper and lower quartiles; whiskers define the 1.5 ×  interquartile range; points show outliers. 
c, t-SNE plots of concatenated FCS files (from left to right: biologically independent samples of all, n =  36; SVZ, n =  8; THA, n =  8; CER, n =  5; GTS, n =  8; 
GFM, n =  7) are overlaid with the four subsets identified by multivariate gating using a (Boolean) combination of one-dimensional gates set according 
to cutoffs and markers shown in b. d, Scatter plots showing correlation between subset frequencies detected by Boolean gating and by automated 
t-SNE gating in n =  36 biologically independent samples. Shaded areas indicate 0.95 confidence intervals of the linear regression, r2 denotes respective 
coefficients of determination. e, Marker importance analysis using the flowType/RchyOptimyx pipeline. The graph shows optimized gating hierarchies 
of the subsets starting from ungated cells (top node) to the eight-marker phenotypes (bottom nodes) as defined by cutoffs in b. The color of the nodes 
shows significance scores of brain region-dependent differential abundance as the negated log P value of the Skillings–Mack test conducted on the same 
n =  35 independent huMG samples (SVZ, n =  8; THA, n =  8; CER, n =  5; GTS, n =  8; GFM, n =  6) from eight individual donors for each preferential addition 
of a subset-defining marker (node labels) which contributes at most to an increase in the significance score. The CD206+ subset 3 phenotype has been 
included to also target the fraction of cells with CD206 expression above cutoff.
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Discussion
Microglia are resident innate immune cells in the human CNS that 
are involved in neural development and function, as well as responses 
to diseases. Although rodent microglia are often used to investigate 
microglial function, the emerging differences between human and 
rodent microglia call into question the clinical relevance of some 

of the research findings obtained in laboratory animals36,37. Several 
research groups have established a firm basis for the use of huMG 
in neuroscience and neuroimmunology and have provided invalu-
able transcriptomic information on these cells12,18,19,38–44. However, 
phenotypic profiling of huMG on the basis of a comprehensive 
array of marker proteins has remained technically challenging.  
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This is particularly true at the single-cell level, which is required to 
identify microglia subpopulations.

Here, we have applied massive single-cell immune profiling of 
huMG from different brain regions by multiplexed mass cytom-
etry, allowing for a detailed phenotypic characterization of huMG. 
Our findings support the notion of microglial heterogeneity in the 
human brain, which is in line with recent data obtained from mouse 
microglia14. Our results substantiate previously published data on 
messenger RNA12,16–18 and protein12,18–20,44,45 expression of huMG. 
The development of a new cell fixation and cryopreservation tech-
nique combined with barcoding (multiplexing), mass cytometry 
and novel algorithms for data analysis enabled us to identify a phe-
notypical signature of huMG that distinguishes them from other 
innate immune cells (for example, cells from blood and CSF).

In this study, we combined t-SNE and probability binning for 
both of their strengths to detect changes in subsets that are defined 
by dim or unimodal marker (co-) expression or subtle shifts in 
expression levels (and thus difficult to enumerate by clustering 
techniques). This approach revealed microglial subsets that differ 
in their abundance across different regions of the human brain, 
indicating phenotypic heterogeneity among huMG. Notably, we 
extracted a panel of eight (out of 57) phenotypical markers that 
allow us to distinguish huMG subsets.

We confirmed the key transcriptomic signature of huMG16,17 at 
the protein level, namely, the expression of P2Y12 and TMEM119, 
the high expression of CD64, CX3CR1, TGF-β 1, TREM2, CD115, 
CCR5, CD32, CD172a and CD91, and the low to absent expres-
sion of CD44, CCR2, CD45, CD206, CD163, and CD274 (PD-L1). 
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The results are in line with recent mass cytometry data on immune 
cells in the mouse brain, which reveal that CD44 is expressed only 
on infiltrating cells and not on resident myeloid cells46. These core 
immunophenotypes of postmortem huMG are apparently compara-
ble with fresh huMG, albeit with differences in signal intensities for 
some markers. Szulzewsky et al.47 observed similar transcriptomic 
profiles between huMG from epilepsy and postmortem tissues. 
Interestingly, we detected the expression of an EGF-like mod-
ule containing mucin-like hormone receptor (EMR)1, the human 
ortholog of F4/80, in huMG, whereas circulating monocytes and 
myeloid dendritic cells in the blood and CSF lacked EMR1 expres-
sion. This is a surprising finding given that EMR1 has been sug-
gested to be a highly specific marker for eosinophils in human and 
is absent on mononuclear phagocytic cells including monocytes, 
macrophages and dendritic cell subsets48.

The combination of antibody panel design, single-cell mass cytom-
etry and computational unsupervised data analysis separated cells  
with characteristics of perivascular macrophages (CD11b+CD206high 
CD163+) from huMG (CD11b+CD206low/−CD163−). Furthermore, 
we identified two microglial subsets that express CD206, but not 
CD163, particularly in the frontal and temporal lobe. These find-
ings are in line with recent studies that showed low expression  
of CD206 mRNA in human microglia17,18. Notably, microglia were 
found to express CD206 after spinal cord injury in mice29, suggest-
ing that CD206 expression may reflect the functional responses  
of huMG.

Recent studies demonstrate that microglia in mice and humans 
are short lived and quickly renewed at the individual cell level49,50. 
At the population level, CNS microglia are maintained by the bal-
anced regulation between proliferation and apoptosis. In agreement 
with these observations, we were able to detect proliferating huMG 
at different phases of the cell cycle across five brain regions. Of note, 
we observed slightly higher expression of Ki-67 (G1, S & G2 phase, 
mitosis), cyclin A (S and G2 phase, mitosis) and cyclin B (mitosis) on 
huMG subsets in the SVZ and thalamus compared with other brain 
regions. Whether this increased proliferation mirrors region-specific 
phenotype and/or function of huMG remains to be investigated.

One important conclusion drawn from this study is that huMG 
have multiple phenotypic signatures that appear to depend on the 
brain region that they reside in, whereas the core immunopheno-
type that distinguishes them from circulating and/or infiltrating 
myeloid cells is retained postmortem across the five investigated 
regions of human brain. The results are in line with previous find-
ings in mouse and human14,18,19. We detected comparatively higher 
expression of markers involved in microglial activation, such as 
CD68, CD86, CD45, CX3CR1, CD11c, CD64, ERM1 and HLA-DR 
in the SVZ and thalamus compared with other brain regions. 
Interestingly, huMG subpopulations in the temporal and frontal 
lobe expressed low levels of the mannose receptor CD206, which 
is a marker of M2-polarized macrophages. Whether this phenotype 
implies a region-specific function remains to be investigated. The 
extent to which the isolation protocol could influence the observed 
differences in regional expression profile is unclear, although the 
finding that huMG in the THA and SVZ have similar phenotypic 
profiles despite differences in the isolation protocol suggests this 
may not be a major factor.

In conclusion, this study demonstrates the power of combining 
multiplexed mass cytometry with bioinformatics to reveal region-
dependent signatures of huMG, even for small sample size and/or 
when the differences between groups are very small. We believe that 
an appropriate protocol for sample preparation is one of the key suc-
cess factors for immune profiling of human postmortem microglia. 
Our findings of microglial heterogeneity in the human brain may 
help to reveal region-specific functions of these cells in health and 
disease, and instruct the development of more selective pharmaco-
logical interventions targeting microglia in humans.
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Methods
Human blood and CSF samples. Venous blood and lumbar CSF samples were 
obtained from four individuals (Supplementary Table 1). The study was registered 
and approved by the Ethics Commission of Charité–Universitätsmedizin Berlin 
(registration number EA1/244/12). All study participants provided informed 
consent before any study-related procedures were undertaken.

Human brain autopsy. Human brain tissue was obtained through the Netherlands 
Brain Bank (www.brainbank.nl). The Netherlands Brain Bank received permission 
to perform autopsies and to use tissue and medical records from the Ethical 
Committee of the VU University Medical Center. All donors have given informed 
consent for autopsy and use of their brain tissue for research purposes. Generally, 
the autopsies of five brain regions (SVZ, THA, CER, GTS and GFM) were 
performed within 10 h after death. Brain tissue collected for this study was from 
the donors whose postmortem CSF was between pH 6.5 and 7.2. An overview of 
the donor information and postmortem variables is summarized in Supplementary 
Tables 1 and 4.

Human brain biopsies. Brain tissue (temporal lobe) was resected for treatment 
of epilepsy in three patients (Supplementary Table 4) with mesial temporal lobe 
epilepsy. The resected tissue used in this study was in excess of that needed 
for pathological diagnosis, and was separated from the epileptic focus with 
strong epileptogenic activity. Experimental protocol was approved by the Ethics 
Committee of Charité – Universitätsmedizin Berlin (EA2/111/14) and is in 
agreement with the Declaration of Helsinki. All patients gave written consent 
before the surgery.

Specimens were collected in the operating room, transported and processed in 
cold carbogenated NMDG-aCSF (95% O2, 5% CO2) containing (in mM): NMDG (93),  
KCl (2.5), NaH2PO4 (1.2), NaHCO3 (30), MgSO4 (10), CaCl2 (0.5), HEPES (20), 
glucose (25), sodium l-ascorbate (5), thiourea (2), sodium pyruvate (3).

Human microglia isolation. Microglia were isolated according to the previously 
published protocol19. Briefly, the isolation was started within 2 to 25 h after autopsy. 
Approximately 2–10 g tissue was first mechanically dissociated through a metal 
sieve in a glucose–potassium–sodium buffer (GKN-BSA; 8 g l−1 NaCl, 0.4 g l−1 KCl, 
1.77 g l−1 Na2HPO4.2H2O, 0.69 g l−1 NaH2PO4.H2O, 2 g l−1 d-(1)-glucose, 0.3% BSA 
(Sigma-Aldrich); pH 7.4). For THA (n =  8), CER (n =  5), GTS (n =  18) and  
GFM (n =  16) tissue mixture, the samples were then supplemented with collagenase 
type I (3,700 units ml−1; Worthington) and DNase I (200 µ g ml−1; Roche 
Diagnostics GmbH) for 1 h at 37 °C while shaking. For the SVZ samples (n =  18), 
the tissue mixture was subsequently incubated in 0.2% trypsin (Invitrogen) for 
20 min at 37 °C. Cell suspension (from all brain regions) was put over a 100 µ M 
cell strainer and washed with GKN-BSA buffer before the pellet was re-suspended 
in 20 ml GKN-BSA buffer. Next, 10 ml of Percoll (Amersham, GE Healthcare) was 
added dropwise and tissue was centrifuged at 4,000 r.p.m. for 30 min (4 °C). Three 
different layers appeared: an upper layer containing myelin, a lower erythrocyte 
layer and the middle layer containing all cell types, including microglia. The 
middle layer was carefully taken out without disturbing the myelin layer and 
washed first with GKN-BSA buffer, followed by magnetic-activated cell sorting 
buffer (PBS, 1% heat-inactivated FBS (Gibco Life Technologies), 2 mM EDTA). 
Microglia were positively selected with CD11b-conjugated magnetic microbeads 
(Miltenyi Biotec GmbH) according to manufacturer’s protocol, which resulted in a 
99% pure microglia population.

Magnetic-activated cell sorted CD11b+ (0.5− 1 ×  105) cells were transferred 
to a 1.5 ml low-binding Eppendorf (Sigma-Aldrich) and centrifuged at room 
temperature for 5 min. The cell pellet was then fixed with fixation/stabilization 
buffer22 (SmartTube) and frozen at –80 °C until analysis by mass cytometry.

Flow cytometry. Cryopreserved microglia (10 GTS, 9 GFM and 10 SVZ; 
Supplementary Table 4) were thawed and washed twice in staining buffer (PBS 
containing 0.5% BSA and 2 mM EDTA).Then, cells were stained for CD45 (HI30), 
CD64 (10.1), CD206 (15-2) and HLA-DR (L-243) in the staining buffer. For 
intracellular staining, the stained (non-stimulated) cells were then incubated in 
fixation/permeabilization buffer (eBioscience) for 30 min at 4 °C. Cells were then 
washed twice with permeabilization buffer (eBioscience). The samples were then 
stained with anti-CD68 (Y1/82A) antibody permeabilization buffer for 30 min  
at 4 °C. Cells were subsequently washed once with permeabilization buffer. 
Forward- and side-scatter parameters were used for exclusion of doublets from 
analysis. Cellular fluorescence was assessed with CantoII (BD FACSDiva Software 
6.1.3; BD Biosciences) and data were analyzed with FlowJo software 10.4.2 
(TreeStar) and Cytobank.
Barcoding. Live cell barcoding. Individual CSF samples (0.5–1 ×  104 cells) were 
pelleted and stained with 89Y-CD45 (Fluidigm) for 30 min at 4 °C. Cells were then 
washed and pooled with PBMCs from the same individual.
Intracellular barcoding. After fixation and cryopreservation, sorted microglia and 
CSF-PBMC-pooled samples were thawed and subsequently stained with pre-made 
combinations of six different palladium isotopes: 102Pd, 104Pd, 105Pd, 106Pd, 108Pd and 
110Pd (Cell-ID 20-plex Pd Barcoding Kit, Fluidigm). This multiplexing kit applies 
a 6-choose-3 barcoding scheme that results in 20 different combinations of three 

Pd isotopes. After 30 min staining (at room temperature), individual samples were 
washed twice with cell staining buffer (0.5% BSA in PBS, containing 2 mM EDTA). 
A total of up to 20 samples (for example, 18 microglia and 2 CSF-PBMC pooled 
samples), were pooled together, washed and further stained with antibodies. In 
total, two multiplexed samples (36 microglia and 4 CSF-PBMC pooled samples) 
were analyzed for microglial regional heterogeneity and phenotypes. For 
comparative characterization, two multiplexed samples of 19 postmortem huMG 
(GTS– and GFM–huMG) and three fresh-biopsy-huMG) were analyzed.

Antibodies. Anti-human antibodies (Supplementary Tables 2 and 3) were 
purchased either preconjugated to metal isotopes (Fluidigm) or from commercial 
suppliers in purified form and conjugated in-house using the MaxPar X8 kit 
(Fluidigm) according to the manufacturer’s protocol.

Surface and intracellular staining. After cell barcoding, washing and pelleting, 
the combined samples were re-suspended in 100 µ l of antibody cocktail against 
surface markers (Supplementary Tables 2 and 3) and incubated for 30 min at 
4 °C. Then, cells were washed twice with cell staining buffer. For intracellular 
staining, the stained (non-stimulated) cells were then incubated in fixation/
permeabilization buffer (eBioscience) for 60 min at 4 °C. Cells were then washed 
twice with permeabilization buffer (eBioscience). The samples were then stained 
with antibody cocktails against intracellular molecules (Supplementary Tables 2 
and 3) in permeabilization buffer for 1 h at 4 °C. Cells were subsequently washed 
twice with permeabilization buffer and incubated overnight in 2% methanol-free 
formaldehyde solution. Fixed cells were then washed, re-suspended in 1 ml iridium 
intercalator solution (Fluidigm), and incubated for 1 h at room temperature. Next, 
the samples were washed twice with cell staining buffer and then twice with ddH2O 
(Fluidigm). Cells were pelleted and kept at 4 °C until CyTOF measurement.

CyTOF measurement. Cells were analyzed using a CyTOF2 upgraded to 
Helios specifications, with software version 6.5.236. The instrument was tuned 
according to the manufacturer’s instructions with tuning solution (Fluidigm) 
and measurement of EQ four-element calibration beads (Fluidigm) containing 
140Ce/142Ce, 151Eu/153Eu, 165Ho and 175Lu/176Lu served as quality control for sensitivity 
and recovery.

Directly before analysis cells were re-suspended in ddH2O, filtered (20 µ m 
Celltrix, Sysmex), counted and adjusted to 3–5 ×  105 cells ml−1. EQ four-element 
calibration beads were added at a final concentration of 1:10 of the sample volume 
to be able to normalize the data to compensate for signal drift and day-to-day 
changes in instrument sensitivity.

Samples were acquired with a flow rate of 300–400 events per second. Lower 
convolution threshold was set to 400, with noise reduction mode on and cell 
definition parameters set at an event duration of 10–150 pushes (push =  13 ms). 
The resulting FCS files were normalized and randomized using the CyTOF software 
internal FCS-processing module on the non-randomized (‘original’) data. Settings 
were used according to the default settings in the software with time interval 
normalization (100 s per minimum of 50 beads) and passport version 2. Intervals 
with less than 50 beads per 100 s were excluded from the resulting FCS file.

Mass cytometry data processing and analysis. Cytobank was used for initial 
manual gating on live single cells, Boolean gating for debarcoding and viSNE to 
generate t-SNE maps24,25,51. FCS files containing the t-SNE embedding as additional 
two parameters were exported from Cytobank for downstream exploratory and 
statistical analyses using R52. The International Society for the Advancement of 
Cytometry’s data standard (Gating-ML 2.0) was used to replicate manual gating 
within the CytoML/openCyto framework and to update/upload autogenerated 
gates into Cytobank53–55. All FCS files were transformed with Cytobank default 
arcsinh transformation (scale factor 5). Nucleated single viable cells were manually 
gated by DNA intercalators 191Ir/193Ir and event length. For debarcoding, Boolean 
gating was used to deconvolute individual samples according to the barcode 
combination. For gated circulating cell populations and huMG from different 
brain regions, expression levels of each marker were assessed and visualized in heat 
maps. Spearman correlation distance matrices of expression means served as input 
for Ward’s agglomerative hierarchical clustering56. Microglia immune phenotypes 
were visualized using two-dimensional t-SNE maps generated from P2Y12

+ (Panel A)  
or TMEM119+ (Panel B) pre-gated huMG cells. The following 32 markers of Panel 
A were selected for t-SNE embedding: CCL2, CD115, CD11b, CD11c, CD124, 
CD16, CD163, CD192, CD195, CD206, CD33, CD37, CD40, CD45, CD56, CD62L, 
CD64, CD68, CD86, CX3CR1, cyclin A, cyclin B1, EMR1, HLA-DR, IL-10,  
IRF4, IRF8, Ki-67, P2Y12, TGF-β , TNF-α , TREM-2; and 35 markers in Panel B: 
arginase-1, c-kit, CCL2, CD103, CD116, CD11c, CD135, CD172a, CD18, CD192, 
CD197, CD206, CD274, CD279, CD32, CD33, CD34, CD36, CD37, CD40, CD44, 
CD54, CD83, CD86, CD91, C/EBPa, CX3CR1, GM-CSF, HLA-DR, IL-10, IL-6, 
PU.1, TMEM119, TNF-α , TREM-2. All pre-gated events were used without prior 
downsampling from 36 samples for each panel (218,986 Panel A, 140,550 Panel B) 
for embedding using Cytobank’s default hyperparameters (perplexity is 30, theta 
is 0.5 and 1,000 iterations). We found that results were robust in multiple runs as 
well as to changes of the input parameters; for example, increasing perplexity and 
number of iterations or removal of some of the markers.
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we quantified differential marker expression between each pair of identified 
subsets as well as the exclusion of all subset gates (cells–subsets) as an additional 
reference. Conceptually similar to the marker enrichment modeling described 
by Diggins et al.71, we used a robust effect size, denoted here as Δ , that scales the 
Hodges–Lehmann estimate72 of the difference in marker expression between two 
subsets by a robust measure of marker expression variability which we defined 
as the median absolute deviation about the Hodges–Lehmann estimator73. Since 
manually defined cutoffs might not capture those features, which accounted 
for the spatial localization of identified subsets in the statistical t-SNE map, 
computed Δ  scores were also used to assess the importance of a given marker 
to algorithmically include only the most relevant markers into data-driven 
phenotypes that could distinguish the identified huMG subsets. In short, we first 
filtered out all markers that did not allow discrimination of at least one subset 
from any other on the basis of a threshold for Δ  and for the amount of expression 
overlap; that is, the difference between the Pth lower expression quantile of a 
subset and upper expression quantile of another subset must be non-negative. For 
each comparison for which the latter holds, we computed cutoffs discriminating 
respective subsets and assigned phenotypes accordingly. We set P to 0.16, 
corresponding to a 2σ  difference between two standard normal distributions. 
This ultimately yields a number of cutoffs per informative marker, ranging from 1 
to k− 1 for k subsets.

To reduce redundancy in the phenotype definitions, we used the R lpsolve 
package to find a combination of at least eight markers that maximized the sum 
of effective differences Δ  between any two subsets with one cutoff per marker. 
This allowed the flowType/RchyOptimyx pipeline74,75 to be fed with binary 
gating cutoffs as input so allowing feasible partition of the data into all possible 
phenotypes and scoring them by the Skillings–Mack test.

Statistical analysis. No randomization strategy was used in this study. Data 
collection and analysis were not performed blind to the conditions of the 
experiments. However, data processing and analysis were carried out in an 
unsupervised manner, to exclude the possibility of biased results. CyTOF data are 
from two multiplexed samples, in which each contains two individual PBMC, two 
individual CSF cell samples and 18 human brain microglia samples (from up to 
five brain regions of 4–5 individual donors). No a priori statistical methods were 
used to predetermine sample sizes due to sample accessibility and insufficient 
previous data. However, sample sizes were chosen on the basis of estimates 
of anticipated variability through previous studies of mRNA transcriptomic 
analysis16,17. Quantitative data were shown as independent data points with mean, 
and analyzed using one-way analysis of variance (ANOVA) with Bonferroni 
correction for post hoc Tukey multiple comparison testing. Data distribution 
was assumed to be normal but this was not formally tested. Statistical tests 
were performed either using GraphPad Prism 6 (GraphPad Software Inc.) or 
computational analysis using Skilling–Mack non-parametric one-way repeated 
measures statistic and FDR adjustment for multiple hypothesis testing as described 
(see Statistical t-SNE maps and automated gating of differentially abundant huMG 
subsets and Phenotypic characterization and automated annotation of significant 
subsets). A single GFM sample (from donor number 12) had to be excluded from 
statistical analyses as the Skilling–Mack testing requires at least two observations 
(or regions) per block.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The codes used for the data analyses in this study is available in 
Supplementary Software or at https://github.com/steschlick.

Data availability
Source data associated with Figs. 4–7 can be accessed at https://flowrepository.org/
id/FR-FCM-ZYM6.
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Statistical t-SNE maps and automated gating of differentially abundant 
huMG subsets. As most of the markers exhibited dim or unimodal expression 
representing a continuum of different phenotypes in the t-SNE maps rather than 
a number of distinctly segregating clusters of cells, existing methods that rely on 
clustering techniques57–59 to first identify a number of subpopulations and then 
test for differential abundance, for example, could not be applied meaningfully. 
Therefore, we used a strategy that quantifies and visualizes differences at the level 
of cellular distribution over t-SNE space56. To this end, we generated 2D histograms 
of the t-SNE maps using the probability binning algorithm available through the 
R flowFP package30,60,61. Dependent on the total number of cells available, a single 
binning model was created on collapsed data from all samples, by recursively 
splitting the events at the median values along the two t-SNE dimensions. We 
chose a grid of 512 bins to have, on average, at least ten cells per bin in each sample 
for statistical accuracy. Global differences between the cellular density distributions 
of samples were quantified using the EMD, a histogram similarity metric that also 
takes the relative location of each bin in the t-SNE map into account. EMD scores 
were computed (using emdist R package) between each pair of 2D histograms and 
similarities were visualized by hierarchical clustering in a heat map representation. 
Regional differences were tested for by permutational analysis of variance using 
distance matrices62 as implemented in the function adonis in R package vegan63, 
and setting donor as strata to account for intersubject variability. To identify local 
features, we performed bin-wise statistical testing for differences in cell frequencies 
between t-SNE maps from different groups (that is, brain regions)32,64. We chose 
the non-parametric Skillings–Mack33, a general Friedman-type statistic to account 
for the non-normality of cell frequency data and intersubject variability with an 
incomplete block or repeated measures design (samples from all five brain regions 
were not available for every donor). Because of the small sample size in this study 
and many ties (as there usually is a sample-dependent fraction of bins which will 
not contain any cell), Monte Carlo simulation was used (10,000 permutations) 
to estimate the null distribution and obtain appropriate Skillings–Mack statistics 
over the grid of bins. Significant differences are visualized in a statistical t-SNE 
map where bins are colored on a sliding scale corresponding to their –log2P, 
allowing for identification of relevant subsets by spotting areas of connected 
significant bins56. As a complementary approach, we used the R cydar package34 
to detect differentially abundant subsets in original multidimensional marker 
space. Here, cells are counted into overlapping hyperspheres with a given radius 
centered at each cell and testing is then performed with the quasi-likelihood 
method in edgeR65 and negative binomial generalized linear models to account for 
overdispersion in the count data. For hypersphere counting on the same markers 
used for t-SNE embedding we used the default parameterization for the radius, 
with downsampled data to 20% of total event numbers and a minimum of five 
cells required to report a hypersphere. Likewise, the result of group-level analysis 
is visualized on the same composite t-SNE plot for interpreting and exploring 
significant hyperspheres by coloring their center cells according to –log2P .

To aid characterization of differentially abundant subsets, compact areas of 
significant bins (or hyperspheres) are identified using a kernel density-based 
automated gating algorithm. We used an in-house R implementation which 
builds on heuristics described by Shekhar et al.57 for partitioning of t-SNE maps 
(ACCENSE), adopts methodologies for automated gating of highest density 
regions in cytometry data66,67 and utilizes functionalities provided in the R ks 
package68,69 for kernel smoothing (source code and description are available 
in the Supplementary Software or at https://github.com/steschlick). A kernel-
bandwidth, that is the degree of smoothing, was first chosen to find an estimate 
of the 2D probability density from the binned data which accurately represented 
the morphology of the t-SNE map. The –log2P from bin-wise statistical testing 
were then integrated as threshold-centered weights into subsequent kernel density 
estimation after correcting for multiple comparisons by controlling the FDR at 5%70.  
This yielded a smoothed profile of the statistical t-SNE map. Local maxima 
representing differentially abundant phenotypes were detected by a 2D peak-
finding algorithm57. Using a standard contouring function, polygons enclosing at 
least six bins (corresponding to an average cell frequency of 1%) to be reported 
were grown from each of these peaks to a desired level of significance (Skillings–
Mack α  =  0.005) as tested on the aggregated bins inside a contour. Of note, we 
also allowed for merging of multiple peaks (or small contours) into a larger 
single region, as long as these were phenotypically indistinguishable by robust 
comparison of marker expression profiles as described in the next section.

Phenotypic characterization and automated annotation of significant subsets. 
Identified cellular subsets were automatically labeled with phenotypes according 
to their distribution of marker expression levels. To describe a subset phenotype, 
values of a specified Pth upper and lower expression quantile of a given marker 
were compared with up to three user-defined or data-driven cutoffs for marker 
positivity. This gave three, six or ten phenotypic categories for a single, two or 
three cutoffs, respectively. For example, a subset is classified to be positive (+ )  
or negative (–) for a given marker, if more than 84% of cells have expression 
levels above or below a single cutoff value, respectively. Otherwise this marker is 
non-informative (0) and will be excluded from the phenotype. Two cutoffs allow 
phenotypic labeling of subsets for example, defined by a low/dim (+ –) or high (+ 
+ ) marker expression. To further facilitate interpretation of subset phenotypes 
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Sample size No priori statistical methods were used to predetermine sample sizes due to sample accessibility and insufficient previous data to enable this. 
However, sample sizes were chosen based on estimates of anticipated variability through previous studies on mRNA transcriptomic analysis 
(Gosselin et al. 2017; Galatro et al. 2017)

Data exclusions In Fig. 6b & c and Suppl Fig. 8, one sample (i.e. donor #12 which has a single GFM region) has to be excluded from statistical analyses as 
testing required at least two observations (i.e. regions) per subject. 
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In Supp Fig 10, three, one and six samples (out of 36 samples) were excluded from data set of subset 1, 3 and 4, respectively, since these 
samples contained no cells of these particular subsets.

Replication The expression of microglia key markers of each individual samples were measured twice (antibody panel A and B) and were reliably 
reproduced.

Randomization no method of randomization was used in this study. Between-subject variability was accounted for with incomplete block and repeated 
measures designs.

Blinding No blinding was done, since we performed unsupervised data processing and data analysis, thus excluded the possibility of biased results.
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Antibodies
Antibodies used CD45 (1:100, HI30 / Fluidigm); CD19 (1:100, HIB19 / Fluidigm); HLA-DR (1:100, L243 / Fluidigm); CD11b (1:100, ICRF44 / 

Fluidigm); CD124 (1:100, G077F6 / Biolegend); CD64 (1:100, 10.1 / Fluidigm); CD11c (1:100, Bu15 / Fluidigm); CD16 (1:100, 3G8 / 
Fluidigm); CCl2 (1:200, 5D3-F7 / Biolegend); CD37 (1:100, M-B371 / Biolegend); CD68 (1:100, Y1/82A / Biolegend); TNF-  (1:100, 
Mab11 / Fluidigm); Cyclin B1 (1:100, GNS-1 / Fluidigm); CD3 (1:100, UCHT1 / Fluidigm); CD56 (1:100, B159 / Fluidigm); CCR5 
(1:100, NP-6G4 / Fluidigm); Cyclin A (1:100, BF683 / Fluidigm); IRF4 (1:100, 3E4 / Biolegend); CD163 (1:100, GHI/61 / Biolegend); 
EMR1 (F4/80, A10 / Bio-Rad); Ki-67 (1:100, B56 / Fluidigm); TGF-  (1:100, TW4-2F8 / Biolegend); CD115 (1:100, 9-4D2-1E4 / 
Biolegend); P2Y12 (biotin) (1:100, HPA014518 / Sigma-Aldrich); IL-10 (1:100, JES3-9D7 / Fluidigm); IRF8 (1:100, 7G11A45 / 
Biolegend); CD206 (1:100, 15-2 / Fluidigm); CD33 (1:100, WM53 / Fluidigm); CD86 (1:100, IT2.2 / Biolegend); CCR2 (1:100, 
K036C2 / Biolegend); CX3CR (1:100, 12A9-1 / Fluidigm); CD40 (1:50, 5C3 / Biolegend); CD62L (1:100, DREG-56 / Biolegend); CD14 
(1:100, M5E2 / Fluidigm); TREM2 (1:100, 237920 / R&D Systems); CD116 (1:100, 4HI / Biolegend); c-kit (1:100, 104D2 / 
Fluidigm); CD44 (1:50, BJ18 / Biolegend); CD18 (1:100, TS1/18 / Biolegend); CD34 (1:100, 581 / Fluidigm); CD103 (1:100, Ber-
ACT8 / Fluidigm); CD83 (1:100, HB15e / Biolegend); IL-6 (1:100, MQ2-13A5 / Biolegend); CD172a (1:100, 15-414 / Biolegend); 
CD54 (ICAM1) (1:100, HA58 / Biolegend); PD-L1 (1:100, 29E.2A3 / Fluidigm); CD135 (1:100, BV10A4H2 / Fluidigm); GM-CSF 
(1:100, BVD2-21C11 / Biolegend); CD32 (FITC) (1:100, 6C4 (CD32) / eBioscience); CD36 (1:100, 5-271 / Biolegend); CD91 (1:100, 
A2MR- 2 (RUO) / BD Bioscience); C/EBP  (1:100, 16C12B70 / Biolegend); Arginase-1 (1:100, 658922 / Fluidigm); PU.1 (PE) 
(1:100, 7C6B05 / Biolegend); CCR7 (1:100, G043H7 / Fluidigm); PD-1 (1:100, EH12.2H7 / Fluidigm); TMEM119 (1:100, 
HPA052650 / Abcam) 



3

nature research  |  reporting sum
m

ary
April 2018

 
Flow cytometry: CD45 (1:100, HI30, Biolegend), CD64 (1:100, 10.1, Biolegend), CD206 (1:100, 15-2, Biolegend) and HLA-DR 
(1:100, L-243, Biolegend)            

Validation All antibodies were validated for use in the human myeloid cells using flow cytometry and subsequently mass cytometry.

Human research participants
Policy information about studies involving human research participants

Population characteristics In whole, donors included in this study were 8 males (with the age of 39, 46, 48, 57, 61, 69, 72 & 80 years) and 5 females (with 
the age of 23, 45, 46, 60 (2 donors) & 80 years), see also Supplementary Table 1. 
 
For studies shown in Fig. 3 and 8, the donors were 3 males (with the age of 39, 55 & 69 years) and 10 females (with the age of 
23, 39, 45, 46, 55 (2 donors), 60, 74, 88, & 98 years), see also Supplementary Table 4. 

Recruitment Human brain tissue was obtained through the Netherlands Brain Bank (www.brainbank.nl). The Netherlands Brain Bank received 
permission to perform autopsies and to use tissue and medical records from the Ethical Committee of the VU University medical 
center (VUmc, Amsterdam, The Netherlands). Brain tissue collected for this study was only from the donors whose post-mortem 
CSF was between pH 6.5 and 7.2. 

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation see Online Method (p. 28 & 29)

Instrument see Online Method (p. 29)

Software see Online Method (p. 29)

Cell population abundance No cell sorting was performed in this study.

Gating strategy see Fig. 8 and Supplementary Fig. 1b.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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