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GraphDDP: a graph-embedding approach to detect
differentiation pathways in single-cell-data using
prior class knowledge
Fabrizio Costa1,2, Dominic Grün3 & Rolf Backofen 2,4

Cell types can be characterized by expression profiles derived from single-cell RNA-seq.

Subpopulations are identified via clustering, yielding intuitive outcomes that can be validated

by marker genes. Clustering, however, implies a discretization that cannot capture the

continuous nature of differentiation processes. One could give up the detection of sub-

populations and directly estimate the differentiation process from cell profiles. A combination

of both types of information, however, is preferable. Crucially, clusters can serve as anchor

points of differentiation trajectories. Here we present GraphDDP, which integrates both

viewpoints in an intuitive visualization. GraphDDP starts from a user-defined cluster

assignment and then uses a force-based graph layout approach on two types of carefully

constructed edges: one emphasizing cluster membership, the other, based on density gra-

dients, emphasizing differentiation trajectories. We show on intestinal epithelial cells and

myeloid progenitor data that GraphDDP allows the identification of differentiation pathways

that cannot be easily detected by other approaches.
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One of the most important tasks in single-cell RNA-seq is
to identify cell types and functions from the generated
transcriptome profiles. State-of-the-art approaches for

cell type classification use clustering to identify subpopulations of
cells that share similar transcriptional profiles (e.g.1–4, see5,6 for
recent reviews). The development of tailored clustering approa-
ches, including measurements for the similarity of transcriptome
profiles, is complex and subject to active research4,7–12. While this
line of research is very successful in determining main cell types,
the clustering hypothesis implies a discretization that does not
reflect the nature of differentiation as a continuous process. This
is especially true for rare cell types such as stem cells. One pos-
sible solution is to give up at the detection of subpopulations and
cell identities altogether. Examples are Monocle13, which deter-
mines a pseudo-time associated with differentiation progress
from the similarities between cell profiles, the use of diffusion
maps to directly determine differentiation trajectories14, or
graph-based approaches like Wishbone15. However, it would be
much more useful to combine clustering with differentiation
pathway visualization since the clustering of major cell types can
serve as an excellent validation tool. In particular, clusters fre-
quently represent metastable intermediate differentiation stages
or stable end points, respectively, and can thus serve as anchor
points, facilitating the derivation of differentiation trajectories.

The million dollar question therefore is how to integrate both
views in the most efficient way. Current approaches visualize the
cell types using dimensionality reduction techniques like principal
component analysis (PCA), multi dimensional scaling (MDS) or
t-distributed stochastic neighbor embedding (t-SNE)16, which
allow the easy detection of instances (cells) that are distant from
cluster centers, thus pointing to possible differentiation pathways.
There are two issues with this strategy. First, each dimensionality
reduction technique has a specific bias that determines which
type of information is preserved in the reduction. The PCA
embedding identifies the two orthogonal axis along which data
exhibits maximal variance which corresponds roughly to the two
main directions of change; when there are multiple factors
influencing data variability, a two dimensional PCA ends up
explain only a small fraction of the total variance in the data and
hence does not offer a clear separation for each factor. MDS is
mainly constrained by the global arrangement and can end up
distorting the local arrangement. The popular t-SNE depends on
a scaling parameter (called perplexity) which, if not set correctly,
yields a layout with data points segregated in several detached
groups positioned arbitrarily relative to each other. Furthermore,
outliers corresponding to rare cells can be grouped together solely
due to their dissimilarity to abundant groups. Second, and more
importantly, the classical dimensionality reduction approaches
are unsupervised, e.g. they do not take into account class infor-
mation available, for example, from a prior clustering phase. The
recent StemID algorithm17, which utilizes cluster medoids as
anchor points, is a first attempt of combining cluster information
and trajectory inference. However, this algorithm still applies
t-SNE for visualization of the results.

Results
The GraphDDP layout approach. To overcome the above
mentioned limitations, we developed GraphDDP (for Graph-
based Detection of Differentiation Pathways), a visualization
approach that exploits prior information, provided as a user
defined clustering assignment, to detect differentiation pathways.
When displaying single-cell data there are multiple criteria that
need to be optimized at the same time. On the one hand,
instances belonging to the same class should be visualized as a
compact (often convex) region. On the other hand, we want to

visually identify differentiation pathways. In this case we would
prefer a more distributed layout of the cells, where differentiating
cells are placed in the vicinity of the most strongly related class
with intermediate cases transitioning between the groups repre-
senting the different cell states.

In order to find a visualization of the data capable to integrate
both aspects, we employ a force-based layout approach (see Fig. 1
and Methods). Our pipeline determines at first the pairwise
similarities between all cells (based for example of their
expression profiles). These similarities are converted into a
preferred distance between cells (more similar cells should be
closer to each other) in the layout algorithm. We use two different
types of edges to account for the two competing visualization
criteria: (a) to emphasize class membership we add edges
connecting each instance (i.e. cell) to its k-nearest neighbors
from the same class; (b) to detect possible differentiation
pathways we also add edges from an instance to the densest
neighbors of a different class. These are called shift-edges as they
implement the mode-seeking approach of the quick shift
algorithm18. The key idea here is that a differentiation pathway
should connect regions of high point density. There are two
effects that contribute to the detection of differentiation pathways
from density information. The first effect is the confluent
differentiation of cells along the same pathway. For example,
suppose there is a differentiation pathway from a class A to a
class B. Then for each instance of A that differentiates to B, the
nearest neighbors of this instance in A should be more dense in B
than in any other class C due to confluent differentiation. The
second effect is the tendency of progenitor cells to be on average
more similar to their descendant mature cells than mature cells of
distinct classes are with respect to each other. Therefore,
differentiation pathways follow the gradient of densities from
higher density of progenitors towards lower densities of mature
cell types. To improve the “visual contrast” we introduce the
concept of “confidence strength” for the user-provided class
annotation. The confidence is used to trade-off the importance of
the two different types of information. A strong confidence score
contracts the desired distance between elements of the same class.
Note that the layout is stable over a whole range of possible
confidence values (see Supplementary Fig. 1).

To investigate the usefulness of our approach, we applied it to
different datasets with user-supplied clustering. First, we re-
analyzed a recently published single-cell transcriptome dataset17

of intestinal epithelial cells. This cell population comprises Lgr5-
positive intestinal stem cells and their descendants of all five
lineages, i.e., absorptive enterocytes, mucus-secreting goblet cells,
anti-microbial Paneth cells, diverse sub-types of hormone-
secreting enteroendocrine cells, and tuft cells19,20. To analyze
the dataset we followed the procedure used by17 and selected 462
cells. The clustering analysis presented in the original study
successfully discriminated mature cell types of distinct lineages
and revealed additional clusters representing intermediate
differentiation stages (Fig. 2a) and the lineage tree inferred by
StemID was in agreement with the current model of intestinal
differentiation (Fig. 2b). However, the t-SNE map representation
did not reveal these differentiation trajectories, since cells of
distinct lineages ended up in detached groups (Fig. 2a). In
contrast, our GraphDDP algorithm positioned the stem cell
cluster 7 in the center and assembled the clusters of distinct
lineages onto connected differentiation trajectories. For instance,
the GraphDDP analysis revealed cluster 1 as a common
progenitor of Paneth and goblet cells, which emerge from a
common trajectory. Moreover, our visualization suggests distinct
branches of enteroendocrine cells, with cells in cluster 15 giving
rise to Cck+ (cluster 12) and Sst+ subtypes (cluster 9), and cells
in cluster 16 being progenitors of Gip+ (clusters 3, 24, and 26)
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and Tac1+ (cluster 11) subtypes. Enterocytes emerge from transit
amplifying cells in cluster 5, consistent with the StemID analysis.
Thus, visual representation by GraphDDP successfully captures
the differentiation trajectories obtained by StemID prior to
dimensional reduction and reveals additional lineage-specific
progenitor states.

A larger scRNA-seq data set was published by the Amit
group21, aiming at resolving heterogeneity across bone marrow
resident myeloid progenitors. They identified 19 classes by
clustering, which were then grouped together to highlight a
developmental continuum. We have analyzed this data using
standard visualization tools like PCA, MDS and t-SNE. However,
all these approaches fail to indicate any differentiation pathways
(see Supplementary Fig. 2). Using our GraphDDP approach with
a strong confidence score, we could clearly detect differentiation
pathways (see Fig. 3). A subset of these classes (in the following
called meta-cluster) that was found both by our approach and in
the original paper consists of C7-C1, which represents erythrocyte
differentiation. The cells in this meta-cluster show a strong
expression of some known erythrocyte transcription factors (TFs)
such as Klf1, Gata1 and Gfi1b. Concerning differentiation
pathways, C7 is clearly an early erythrocyte progenitor and C1
the end-point of differentiation marked by strong expression of
hemoglobin. However, as can be seen in Fig. 3, we found
indications that there are alternative possible pathways within this
meta-cluster. Here, especially the relation of C2, C3, and
C4 seems to be unresolved, while the differentiation order was
resolved for C7, C6 and C5. This is reflected by expression
profiles of different markers for erythrocyte differentiation. Car1
and Add2 support a differentiation ordering C4→C3→C2→C1,
whereas the expression profile of other proteins related to
erythrocyte progenitors like Ermap and Add1 indicate a different

order, namely C4→C2→C3→C1. In order to investigate this in
more detail, we developed a more comprehensive approach to
visualize pathways. Given the user-defined classes, we tackle the
visualization task using a multi-class classification approach.
Here, we estimate the class probability for each cell using logistic
regression on the cell profiles. In order to inspect whether a class
is a transitional state between two other classes, we use a ternary
plot of the estimated class probabilities for all cells of the putative
transition classes. In a ternary plot, each vertex represents one of
the three classes. For any point in the plot, the probability for
each of the three classes is given by the distance to the edge
located opposite to the class vertex. To investigate for example
whether C6 is a transition state between C7 and C5, we estimate
the probability of the cells of C5, C6, and C7 to be a member of
these classes. As shown in the ternary plot for C5, C6, and C7 in
Fig. 3, the cells show a clear tendency to be either towards the line
between C6 and C5, or are close to the line between C6 and C7. If
a cell is close to the line C6 and C5, this implies that the
probability for C7 is negligible, and the cell is on the C6→C5
pathway. We have also introduced a confusion score (see
Methods), which has a value between 0 and 1. For the C5-C6-
C7 subgroup the value is 0.06 and thus close to 0, which indicates
a clear pathways. As a counter example with a confusion score of
0.72, we do not see such a trend for the cells in C2, C3, and C4.
These cells have very often similar probabilities for C2, C3, and
C4, and thus are placed predominantly in the center of the
triangle. This implies that there is no preference for a specific
differentiation pathway in these three classes.

The other prominent meta-cluster C13→C16 consists of
neutrophil cells and progenitors. Here, the differentiation path-
way is even clearer than in the erythrocyte meta-cluster, as we can
see from the edges indicating differentiation trajectories between
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Fig. 1 Steps in our visualization approach. a Each cell is initially assigned to the class as determined by the user-provided clustering; furthermore, additional
pre-processing such as filtering and feature selection is done. b For each pair of cells the similarity of the expression profiles is calculated using different
metrics (see Methods). c To emphasize class membership in layout, we add for each cell an edge to the k-nearest neighbors of the same class; each edge is
annotated with the desired distance between the two cells. d To visualize differentiation pathways, we add another type of edge called k-shift-edges, which
connects cells to the k′ densest neighbors of a different class. e A force layout algorithm interprets each edge as a spring. f The optimal 2D configuration is
determined minimizing the total energy of the systems. g We determine the convex hull of a given class in the layout. h Ternary plots are provided to
further investigate differentiation pathways. Using a multi-class prediction approach, cells that are clearly members of a class are close to the corners, cells
on the differentiation pathway between two classes lie on the corresponding edges, and undetermined ones are placed in the center of the plot
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Fig. 2 GraphDDP reveals differentiation trajectories of intestinal epithelial cells. a t-SNE map representation of intestinal epithelial single-cell transcriptome
data from Grün et al.17. Clusters, highlighted in different colors, were derived by RaceID2 in the original study and correspond to distinct cell types or
progenitor stages. b The lineage tree inferred by StemID is overlaid on cell clusters. Thicker links reflect higher coverage of a link by cells, and the color
reflects the significance of a link measured by a logarithmic p-value. The lineage tree was found to be in good agreement with the current model of
intestinal cell differentiation. c Visualization of the intestinal epithelial data by GraphDDP. The convex hull of each cluster is shown and shift edges are
depicted to reflect the relations between clusters. The representation places stem cells in the center, recapitulates the differentiation trajectories shown in
b and identifies novel lineage-specific progenitor relations (see text)
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successive classes. This is also supported by expression profiles of
neutrophil markers such as Prnt3, Elane, and Mpo. We can
observe a pronounced expression, as well as a gradient for these
markers in C13 to C16 (see Fig. 3).

Comparison to other approaches. We proposed an approach
that makes use of prior clustering information and that uses
two types of edges to obtain a layout that can at the same time
visualize compact groups and transitions between groups. We
have compared the quality of the layout with that obtained
by t-SNE with a higher perplexity parameter in order to avoid
the formation of disconnected components. As shown in Sup-
plementary Fig. 4, although some additional pathways can be
detected, a clear class separation is lost.

We then investigated the effect and relative importance of the
two types of edges, namely the k-NN edges and k-shift edges. A
recently published method called SPRING22 uses a force-directed
layout for a k-nearest-neighbor graph to visualize scRNA-seq

data. To mitigate the influence of a different data preprocessing,
we compare to the SPRING method using our code implementa-
tion. We have tried three different approaches. First we used a
small number of k-NN edges (k= 3) without resorting to any
confidence contraction. Supplementary Fig. 5 shows that this
yields disconnected layouts with overlapping clusters. Second, we
tried a stronger neighborhood (k= 7). As shown in Supplemen-
tary Fig. 6a), this yields a noisy layout with fragmented classes. In
Supplementary Fig. 6b), we added prior information to contract
edges that are within one class (note that this is an extension of
the pure k-NN-based approach used in SPRING). In this case the
layout seems to improve, but it is still noisy, especially for less
populated classes.

Finally, we assessed whether pseudotime-based approaches are
able to identify pathway information. We used TSCAN23 for our
datasets (see Supplementary Fig. 7a–d). For the intestine data set,
TSCAN accepts maximal 6 clusters (we provided the actual
cluster number as parameter) and displays only one pathway
(sub-figure a). When displaying the pseudotime on our layout, we
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Fig. 3 Visualization of scRNA-seq data21 of bone marrow resident myeloid progenitors. The edges represent the denser neighbor of different class (i.e.,
k-shift edges), indicating differentiation trajectories. The meta-cluster consisting of C1–C7 (encircled in green) represents erythrocyte differentiation, with
C1 being the endpoint expressing hemoglobin and C7 being an early erythrocyte progenitor. The differentiation order is clear for clusters C7, C6, and C5, as
indicated by many k-shift edges between C7, C6 and C6, C7 in the layout. This is also supported by the ternary plot for C7, C6, C5 (upper triangle), where
the cells are mostly located close to the C7–C6 line, or to the C6–C5 line of the triangle. The associated confusion score (see Methods) of 0.06 also clearly
indicates a transition. For C2,C3, and C4, there is no obvious ordering, as they are connected by many k-shift edges between all pairs of combination
(C2–C3, C2–C4, and C3–C4). Again this is supported by the ternary plot (lower triangle), with many cells in the middle of the triangle, indicating an equal
likelihood to be classified as being a member of C2, C3 or C4. The associated high confusion score (0.72) also clearly indicates that there is no clear
transition. This divergence can also be seen when looking at the expression profile of different markers for erythrocyte differentiation (plots on the right),
which support the order C4→C2→C3→C1, as well as C4→C3→C2→C1. The meta-cluster consisting of clusters C13, C14, C15, and C16 (encircled in red)
on the other hand relates to neutrophil differentiation, which is supported by the expression profiles of marker genes for neutrophil cells (plots on the left)
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find that only the major pathway (roughly from left to right in
our layout) can be detected and that all other pathways are lost
(sub-figure b). When we superimpose the classes detected by
TSCAN on the GraphDPP layout (sub-figures c+d) we do not see
a good correspondence between the class notion and the visual
grouping.

For the myeloid data (see Supplementary Fig. 8), we have used
the same number of classes given to GraphDPP for TSCAN
(i.e. 20). Once again TSCAN can detect only one linear pathway,
compatible with neutrophil cells, early progenitor and erythrocyte
differentiation (sub-figure a). However, when we visualize
TSCAN pseudotime, we observe (1) large differences in
pseudotime within individual clusters, (2) we cannot clearly see
major differentiation pathways (sub-figure b) and (3) different
groups tend to share the same pseudotime. This class splitting can
be clearly seen when comparing the class labels given by the
original publications (sub-figure c) and the TSCAN defined
classes (sub-figure d).

Finally, we validated whether GraphDPP can retrieve known
biological differentiation pathways where ground truth data
exists. In mouse, hematopoietic stem cells (HSCs) give rise to a
multipotent progenitor population, which shows early segrega-
tion into sub-populations biased towards distinct lineages.
Megakaryocytes branch-off first24 followed by a segregation into
erythrocyte progenitors, on the one hand, and lymphoid-primed
multipotent progenitors (LMPP), on the other hand25. The latter
further differentiate into common lymphoid progenitors (CLP) of
natural killer cells as well as, predominantly, B cells, and
granulocyte-macrophage progenitors (GMP). Using a recently
published large single-cell RNA-seq dataset of mouse multipotent
hematopoietic progenitors26, application of GraphDDP on
clusters obtained with RaceID327 reflects this lineage tree
architecture clearly, with HSCs in the center, proximal separate
branches of erythrocytes and megakaryocytes, and an LMPP
population upstream of B cell progenitors and progenitors of
neutrophils and monocytes (see Supplementary Fig. 9). Remark-
ably, GraphDDP layout separates megakaryocyte progenitors
from HSCs and B cells although they were initially clustered
together. Similarly, the layout visually separates B cell progenitors
from naïve LMPPs which were also co-clustering. In contrast,
Monocle228, a state-of-the-art method for lineage tree inference,
did not correctly resolve this hierarchy. Although it recovered
major branches, CLPs were assigned to a separate branch from
B cells. Furthermore, GMPs appeared as an outgroup, while the
tree structure suggests a common upstream progenitor of B cells
and erythrocytes. Hence, GraphDDP shows excellent perfor-
mance in recovering actual biology for a well-characterized
ground-truth dataset superior to established methods.

Discussion
We have presented GraphDDP, an informed visualization approach
for the detection of differentiation pathways in single-cell tran-
scriptome data. There are competing aspects for the analysis of
scRNA-seq data, namely the detection of major cell-types and the
investigation of differentiation trajectories. As the clustering of
single-cell transcriptome data for the detection of cell types is a very
active field of research and provides an intuitive way to analyze and
validate this type of data, we developed a novel approach that
combines both analysis aspects. We found that GraphDDP could
detect differentiation trajectories in intestinal epithelial and myeloid
progenitor cells that could not be identified with state-of-the-art
visualization approaches such as t-SNE, PCA or MDS. We fur-
thermore compared our approach to recent visualization approa-
ches, including pseudotime-based methods like TSCAN and
Monocle2, as well as k-nearest neighbor approaches like SPRING.

We found that GraphDPP could correctly visualize the hierarchy of
cells and associated pathways that were not determined by the other
approaches. Thus, we expect that GraphDDP can reveal novel
insights in differentiation dynamics of a variety of cell populations
profiled by single-cell RNA-seq.

Methods
Overview. We propose an embedding method based on a graph layout technique
that relies on an external class assignment. Each cell is modeled as a node in a
graph and edges are created only between selected pairs of cells. Problem specific
priors can be introduced in the algorithm by choosing which edges to instantiate.
The 2D embedding is then computed using a standard force directed graph layout
technique.

Pre-processing. We represent the n cells, or instances, in a vector space IRg, where
g is the number of genes. Initially feature values correspond to the raw number of
reads in each cell associated to a specific gene. We considered several pre-
processing steps (see Fig. 1a, b): (1) class filtering, (2) feature normalization,
(3) feature selection, and (4) feature transformation. These pre-processing steps
effectively improve the detection of differentiation pathways. Omitting some if
these steps usually leads to a layout with less well defined grouping of clusters into
differentiation trajectories (see Supplementary Fig. 3).

Class filtering is performed to remove the clusters that contain fewer cells than a
user defined threshold. Feature normalization equalizes the cumulative number of
reads per cell, i.e., the actual counts are divided by total number of UMIs per cell.

Feature selection is the removal of non-informative gene expression counts.
Here we use the recursive feature elimination29 (RFE) method. This approach is
based on a selected estimator that can assign weights to features, such as the
coefficients of a linear model. RFE recursively considers an increasingly smaller
set of features. RFE is initialized with as estimator trained using all the available
features. Then, the 20 features with the smallest absolute weights are removed. This
step is recursively repeated until the estimated accuracy score computed via a
5-cross-validation is increasing, i.e., until the removal of the features actually
improves the predictive capacity. The estimator on which the RFE procedure is
based is a linear support vector machine (SVM) with stochastic gradient descent30

(SGD) learning. In the SGD, the gradient of the hinge loss is computed at each
sample and the model is iteratively updated using a decreasing learning rate. As it is
standard in SVM, we use the squared euclidean norm L2 of the model parameter
vector as a regularizer to shrink the parameters towards the zero vector. The multi-
class problem is solved using the “One Versus All” (OVA) strategy, where only one
classifier per class is used and for each classifier, a single class is fitted against all the
other classes. For all other parameters we use the defaults of the SVM SGD
implementation provided by scikit-learn31.

Feature transformation builds a different feature representation on the basis of
the original protein expression counts. We found the transformation in the Pearson
product-moment correlation coefficient matrix to be a useful data transformation
as it allows to work only on the shape of the expression pattern (see Fig. 3
in Supplementary Material for an example of what are the effects of not applying
the transformation) and has superior performance in revealing differentiation
trajectories compared to alternative metrics for various datasets. This
transformation maps instances to vectors in IRn, employing as descriptive features
the correlation in expression of this instance with respect to all available instances
in the data set. Given the vector representation of a cell profile x∈ IRg we consider
the sequence of all the cell profiles zif gn�1

i¼0 and compute the ith entry in the new

representation p∈ IRn as p½i�= ρx;zi =
covðx;ziÞ
σxσzi

where the covariance is defined as

cov(x, z)= E[(x− μx)(z− μz)] and the standard deviation is σ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x � μð Þ2� �q

where E is the expectation and μx is a compact form to indicate E[x].

Modeling priors via edges definition. In order to detect differentiation pathways
we would like (a) cells belonging to the same class to be positioned near each other,
but at the same time we want to (b) identify transitions across different but related
classes. For each specific case we introduce a different type of edge in the graph (see
Fig. 1c, d). We will use the concepts of distances to define neighbors and density
gradients to define transitions between classes. In order to bias the layout solution
to encourage (a), we connect each instance to its k-nearest neighbors if they have
the same class. Given a pair of instances pi,pj∈ IRn we then use the Euclidean
distance kpi � pjk2 to compute the k-nearest neighbors. The bias for (b) is enforced
by connecting each instance to its k′ nearest denser neighbors if they have a
different class. More in details: given an instance pi, we consider its closest
neighbors, and take the k′ nearest that have a higher density and a different class
than pi. We call these cells k-shift neighbors to indicate a similar mode seeking
behavior as done in the quick shift algorithm18. In order to enforce the principle of
locality (we do not want to link instances that are at the opposite sides of the
embedding space) we further constraint the k-shift edges to be within a user
specified threshold value h that we call the knn horizon: the shift links are defined
as the k′ nearest neighbors with a higher density and a different class that are also
among the h nearest neighbors.
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We chose denser neighbors rather than just any neighbor (of a different class) in
order to identify possible differentiation paths: if a cell type A evolves in a more
differentiated cell types B, as explained above, this is likely to follow a density gradient
from dense progenitor to less dense mature cell types. Furthermore, confluent
differentiation would materialize in connections between points of high densities.

While density estimator exist that are based on the notion of distances, for
example the average pairwise distances, we note that these approaches are quite
sensitive to outliers. To gain robustness, we exploit the normalization property of
the cosine similarity and define density D(pi) of an instance pi as the average
pairwise cosine similarity

D pið Þ ¼ 1
n

Xn
j

pi; pj
D E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi; pih i pj; pj

D Er :

Layout algorithm. The procedure we described yields an unweighted instance
graph G= (V,E) where V is the set of vertices (one per cell profile) and E is the set
of edges or selected pairwise relations between cell profiles. Before the layout phase
we assign a desired length to each edge proportional to a desired distance between
its endpoints i and j. We then use a force directed layout algorithm to determine
the optimal position of each vertex (see Fig. 1e, f). Here we use the algorithm
from32 (KK) to obtain a layout that can accommodate the specified edge lengths.

In detail, we model our data set as a dynamic system of particles, with
coordinates vi= (xi, yi) ∈ IR2, mutually connected to each other by springs of
strength kij. We seek the layout that minimizes the total energy of the system:

E ¼
Xn�1

i¼1

Xn
j¼iþ1

1
2
kij vi � vj

��� ���� dij
� �2

where dij is the desired distance between i and j defined as the length of the shortest
path between i and j on G (which can be readily computed using the Dijkstra’s
algorithm). The spring strength is defined as kij= K=d2ij with constant K. The
computation of the optimal layout is based on the observation that the necessary
conditions for a local minimum are that ∂E

∂xm
= ∂E

∂ym
= 0 for 1 ≤m ≤ n. However this

yields 2n simultaneous non-linear equations that are not independent. The authors
suggest to adopt an iterative approximation scheme where only one particle m at a
time is moved to its stable point while all other particles positions are frozen. This
allows to use a two dimensional Newton-Raphson method to minimize E as a
function of only xm, ym. Each time the particle with the largest contribution to the

energy of the system is chosen, i.e. arg maxmΔm where Δm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂E
∂xm

� �2
þ ∂E

∂ym

� �2
r

.

The starting position is not critical and all particles are hence initially placed on a
regular n-polygon. Each selected particle m iteratively updates its position xm, ym
as: xðtþ1Þ

m = xðtÞm þ δx; yðtþ1Þ
m = yðtÞm þ δy for t= 0, 1, … where the increments are

computed by satisfying the following linear equations:

∂2E
∂x2m

xðtÞm ; yðtÞm
� �

δx þ ∂2E
∂xm∂ym

xðtÞm ; yðtÞm
� �

δy ¼ � ∂E
∂xm

xðtÞm ; yðtÞm

� �
∂2E

∂ym∂xm
xðtÞm ; yðtÞm

� �
δx þ ∂2E

∂y2m
xðtÞm ; yðtÞm

� �
δy ¼ � ∂E

∂ym
xðtÞm ; yðtÞm

� �

The coefficients for these equations can be computed in close form starting from
the total energy of the system and taking the required derivatives with respect to xm
and ym. The algorithm terminates when Δm becomes sufficiently small.

User defined confidence strength in class assignment. In order to obtain more
pleasing and informative layouts, the user can decide to enhance the perceived
separation of classes by increasing the strength of the constraint (a) i.e. the
k-nearest neighbors edges over (b) i.e. the k-shift edges. In this way the user can
ensure that cells belonging to the same class are positioned near each other
notwithstanding the global relationships between different classes imposed by the
k-shift edges. Please note that the user-defined clustering is a critical prior infor-
mation, and wrong layouts are generated if wrong or low quality class assignments
are provided. In more detail, we encode the user confidence on the class assignment
as a real positive value C. Finally, the k-nearest neighbors edges are favored over
k-shift edges by contracting their desired distance to d(x, z)/(1+ C). As a result, a
value of confidence C= 0 does not affect the layout, while values of 1, 2, … 9 result
in an intuitive two fold, three fold, … ten fold magnification of class separation.
Note that in the KK algorithm the penalty for violating a given length constraint is
inversely proportional to square of the desired edge length. In this way the con-
traction strategy manages to allocate more importance to the k-nearest neighbors
edges. Note also that the contraction does not imply necessarily that single compact
clusters will be enforced; if a class naturally decomposes in multiple groups, these
will be individually contracted but will most likely remain separated, revealing that
the user defined class assignment was too coarse.

Ternary plots. To better evaluate and visualize the dependencies between clusters
we employ ternary or simplex plots (see Fig. 1h). A ternary plot graphically shows

in two dimensions the ratios of three variables as positions in an equilateral triangle
under the constraint that they sum to a constant. In our case the three variables
represent the probability that an instance belongs to one of the three classes under
consideration. The Cartesian coordinates for a point representing the triple (a, b, c)
where a= 100% is located at (0, 0), b= 100% is located at (1, 0) and c= 100% at
1
2;

ffiffi
3

p
2

� �
can be readily computed as 1

2
2bþc
aþbþc;

ffiffi
3

p
2

c
aþbþc

� �
. To compute the probability

for each instance we solve a multi-class problem using the logistic regression33

technique. In particular we employ the one-vs-rest (OvR) scheme where we solve
as many binary classification problems as there are classes. For each binary pro-
blem we estimate the the probability that an instance pi∈ IRn belongs to class y as:

P Yi ¼ yjpið Þ ¼ eβpiy

1þ eβpi

where the coefficient β are estimated using the liblinear solver34 and the prob-
abilities are computed using a 5 fold cross-validation.

The ternary plots allow to visually gauge whether instances belonging to a given
class can be clearly distinguished (the point cloud is concentrated mainly in the
class vertex), or if the class definition is ambiguous or incorrect (no structure in the
point cloud is visible) or if there is likely a transition from one class to the other via
the third (a C shaped distribution in the point cloud can be detected). The
underlying assumption here is that if the predictive model cannot discriminate
whether an instance belongs to class a or b than the instance is likely to be in a
transitional state between the two classes and is represented as a point located
along the axis connecting a and b. We define a confusion score to quantitatively
represent this degree of “transition” from one class to the other via the third, as
follows: for every instance we compute P(Yi= y | pi), that is the probability of
belonging to each one of the three classes under consideration; we average the
score across instances belonging to the same class to obtain the confusion matrix D,
a 3 by 3 matrix where Dij contains the average probability of classifying an instance
belonging to class i as being of class j; we symmetrize D as D′= DDT

2 and consider
the cumulative error vector E= D′

12;D
′
13;D

′
23

� 	
; given the minimum element Em

with m= arg min E we define the score as S= EmP
m′≠m

Em′
that is, as the ratio of the

minimum multiclass error over the sum of the remaining two multiclass errors. A
small score value indicates the presence of a transition. The intuition behind this
choice is that a high multiclass errors between two classes indicates that there are
intermediate instances that cannot be clearly classified as belonging to only one of
the classes. Hence when we find that one pair of classes has a small error and the
other two pairs have a high error we can infer the presence of a transition from one
class to the other via the third.

Comparison to Monocle2 and TSCAN. Monocle 228 was run on non-normalized
transcript counts with min_expr= 20 and num_cells_expressed ≥ 5. Cell types of
the B cell, megakaryocyte, erythrocyte, and neutrophil/monocyte lineages were
assigned based on expression of Pax5, Pf4, Hba-a1, and Elane, require a minimum
expression of 5, 10, 20, and 50, respectively. Differentially expressed genes (qval <
0.01) were identified for each cell types and the top 100 genes for each cell type
were selected for downstream analysis. Dimensions were reduced using DDRTree
with max_components= 2, norm_method= log. For GraphDDP clusters obtained
by RaceID327 run with mintotal= 10,000, minexpr= 17, outminc= 17, probthr=
1e-4, CGenes= (“Mki67”,“Pcna”), and default parameters otherwise, were used as
input. GraphDDP was run with the parameters: --feature_selection --correla-
tion_transformation --min_threshold= 5 -c 1 -k 3 -d 1 -l 3 -z 5 --random_state=1.

For the comparison with TSCAN, we downloaded the most recent package
available on github (https://github.com/zji90/TSCAN, version 1.7.0) and used the
provided R-script GUI with mainly default values except for the number of clusters.
This implies that we used a log 2 transform as proposed by TSCAN (we tried
without this transformation, but it did produce worse results). Furthermore, each
cluster had to contain at least 5% of all genes. For the intestine case, this implied that
we had to reduce the number of clusters to the optimal value proposed by TSCAN
(6). For myeloid, we could use 20 as number of possible clusters. We then used the
TSCAN built-in method to determine the pseudotime. The other possibility,
Monocle, was not used as we have a comparison to the more recent Monocle2.

Code availability. The source code is available at: https://github.com/fabriziocosta/
GraphEmbed. In addition we provide a Jupiter notebook35 where the user can set all
the parameters using sliding bars and observe interactively the effect on the layout.

Data availability
All data is accessible in GEO with the following accession codes: (a) for the myeloid
progenitors data21, the accession code is GSE72857; (b) for he mouse multipotent
hematopoietic progenitors26, the accession code is GSE81682; (c) our intestinal data has
the accession code GSE76408.
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