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The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the 
third day and the third month of life, remains poorly understood. Group B Streptococcus 
(GBS) is the most important cause of LOD in infants without underlying diseases or 
prematurity and the third most frequent cause of meningitis in the Western world. On 
the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite 
its adaption to the human lower gastrointestinal tract, GBS has retained its potential 
virulence and its transition from a commensal to a dangerous pathogen is unpre-
dictable in the individual. Several cellular innate immune mechanisms, in particular 
Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS 
effectors like nucleic acids. These are likely to impact on the GBS-specific host resis-
tance. Given the long evolution of streptococci as a normal constituent of the human 
microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 
50 years ago is remarkable. It appears that intensive usage of tetracycline starting 
in the 1940s has been a selection advantage for the currently dominant GBS clones 
with superior adhesive and invasive properties. The historical replacement of Group 
A by Group B streptococci as a leading neonatal pathogen and the higher frequency 
of other β-hemolytic streptococci in areas with low GBS prevalence suggests the 
existence of a confined streptococcal niche, where locally competing streptococcal 
species are subject to environmental and immunological selection pressure. Thus, it 
seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact 
on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, 
at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated 
strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their 
potential and facilitate adaptation of potentially hazardous streptococci as part of a 
beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.

Keywords: S. agalactiae, Group B Streptococcus, cellular innate immunity, microbiome, colonization, sepsis

INTRODUCTION

Neonatal sepsis occurs as two distinct clinical entities either in the first 72 h of life as early-onset 
disease (EOD), resulting from in utero or intrapartum infection, or during the following 3 months as 
late-onset sepsis (LOD). In both cases, the Gram-positive, β-hemolytic Group B Streptococcus (GBS) 
is one of the most prevalent bacterial species in blood and cerebrospinal fluid. As a consequence, 



2

Kolter and Henneke Neonatal Immune and Microbiome Codevelopment

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1497

pregnant women undergo routine or targeted screening for 
GBS in the last third of pregnancy in many Western European 
countries and the USA. In case of positive testing, women receive 
preventive intrapartum antibiotics during delivery (1). Since 
approximately 20–30% of all pregnant women are colonized, this 
prevention strategy affects an estimated 1 million women every 
year in the US alone. In other countries such as the Netherlands, 
a risk-based approach has been adopted, i.e., antibiotics are only 
administered in case of additional risk factors such as premature 
labor, intrapartum fever, bacteriuria, prolonged membrane  
rupture or previous children with GBS disease.

Before the use of antibiotic prophylaxis, the GBS sepsis 
incidence exceeded 1 in 1,000 children with high case fatality 
rates (2, 3). The role of GBS in neonatal sepsis may be due to (i) 
it being one of the most prevalent colonizers of the birth canal 
and thus among the first bacteria to get into contact with the 
newborn (4, 5), (ii) GBS carrying highly invasive properties, and 
(iii) a particular neonatal immunopathology induced by GBS. 
In EOD, the size and deposition site, e.g., the lung, of the GBS 
inoculum may be decisive factors. However, it is unresolved 
why GBS establishes as a harmless mucocutaneous colonizer 
in approximately 10% of infants in the first weeks of life, and 
overcomes epithelial barriers and cellular innate immunity only 
in less than one in thousand infants to cause LOD. In other 
words, it remains a puzzle which specific factors at the level of 
mucosal immunity and the local microbiome allow GBS to leave 
its colonizing niche, thus facilitating invasion in the individual 
child.

At the beginning of life, the developmental lines of the 
microbiota and of the local cellular innate immunity have 
to run with substantial interdependence. Both areas are 
subject to factors in cis and in trans, i.e., specific bacteria are 
influenced by the microbiota and by host immunity, and host 
cells are modulated by other host and microbial cells (6). In 
order to guarantee long-term ecologic stability, adaptation 
on either side of the host–microbe interface is required, both 
at the population level and in the individual cell. The puta-
tive contribution of variations in specific innate immune 
genes to neonatal sepsis has recently been discussed (7). The 
authors suggested that affected children may suffer from yet 
to be identified minor primary immunodeficiency. This is a 
tempting hypothesis, given the enormous gain in knowledge 
on single gene alterations leading to susceptibility to a nar-
row spectrum of microorganisms. On the other hand, there 
is no indication for inheritance of a specific neonatal sepsis 
risk. Moreover, LOD typically remains the only “suspicious” 
episode in the individual infection biography. Finally, preterm 
birth is a well-recognized risk factor of GBS sepsis. In preterm 
infants, several factors impact on the individual codevelop-
ment of microbiota and immunity, in particular cesarean 
section and formula feeding, which modify the microbiome 
(8, 9), and antibiotic usage, which affects both the microbiome 
and myeloid cell development (10, 11).

The hypothesis underlying this review holds that aberra-
tions in the codevelopment of microbiota and host immunity, 
rather than genetic variations in immune genes alone, shape the  
individual risk for neonatal GBS sepsis, in particular LOD.

GBS: COLONIZATION AND VIRULENCE 
FACTORS

Neonatal GBS sepsis is a global problem with an overall 
incidence of around 0.5/1,000 live births. In contrast to the 
situation in Europe, American and African countries, GBS are 
reported to be a rare cause of neonatal colonization and sepsis 
in Southeast Asia (12, 13). However, the epidemiology in devel-
oping countries often suffers from constraints related to early 
deaths outside hospitals and low microbiological sensitivity of 
detection methods (13). In many, but not all Western European 
and North American countries, intrapartum antibiotic prophy-
laxis (IAP) has been associated with a decreased incidence of 
EOD while LOD rates remained unchanged (14–16). Notably, 
a substantial proportion of mothers whose infants developed 
EOD were tested negative before birth (1). It is unclear whether 
this phenomenon is due to false-negative test results or very 
recent GBS acquisition. Although, as outlined above, incidence 
and fatality rates are significantly higher in preterm than term 
infants (16–18), most cases occur in term infants (1) without 
clinical or laboratory evidence for immunodeficiency. LOD 
alone has an incidence of about 0.3–0.4 per 1,000 children and 
can develop randomly within the first 3 months after birth (19). 
It manifests more frequently as meningitis than EOD (17, 20). 
Conceptionally, these observations indicate that EOD and LOD 
originate from distinct biological processes or disturbances 
thereof.

Group B streptococcus is classified into 10 serotypes based 
on chemical structure and conformation of capsular polysac-
charides. Serotyping relies on latex agglutination or multiplex 
PCR (21). In the past 30 years about 50% of the reported neo-
natal GBS sepsis cases worldwide were caused by serotype III 
strains (13). This indicates a considerable genetic homogeneity  
and sta bility in the pathogenic potential of GBS despite anti-
biotic sele ction pressure. Notably, Islam et  al. did not detect 
any colonization by GBS of serotype III in their cohort of more 
than 600 infants in Bangladesh, while 6% of all infants were 
colonized by other serotypes, predominantly VII and Ia (22). 
It is very plausible yet uncertain that low circulation of highly 
invasive GBS strains underlies the low incidence of invasive 
neonatal GBS in several Asian countries (13).

In addition to the serotypes, GBS can be further classified 
by multilocus sequence typing, with more than 700 identified 
types (ST). The majority of human isolates belong to six clonal 
complexes (23, 24). EOD is significantly associated with serotype 
Ia strain ST-23 and closely related ST-24 as well as the ST-17 
strain of serotype III (25, 26). LOD on the other hand is largely 
caused by ST-17 (20, 25). Moreover, ST-17 causes most cases 
of meningitis in EOD and LOD (27). In EOD, the distribution 
of invasive strains mainly corresponds to those colonizing the 
mothers (26). However, ST-17 shows an elevated disease-to-
colonization ratio in EOD and LOD, i.e., it causes more cases 
of invasive disease than expected from its colonization rate of 
pregnant women (28–30). These observations, together with 
the characteristic expression of several virulence factors, have 
led to the term of a “hypervirulent” strain. Two of these factors, 
the hypervirulent GBS adhesin HvgA (27) and the serine-rich 
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repeat glycoprotein Srr2 (31), are surface-anchored proteins 
which allow for adherence to epithelial cells and host plasma 
proteins. ST-17 strains also often carry the 2b pilus variant which 
contributes to invasion in mouse models (32, 33).

Most GBS strains produce surface-associated β-hemolysin 
which can damage membranes and promote barrier penetration 
(34). β-Hemolysin was found to be identical to the orange to red 
pigment of GBS, an ornithine rhamnolipid called granadaene 
(35). Both factors rely on the cyl operon which is controlled by 
the CovR/S two-component system. Strains mutated in CovR/S 
show hyperhemolysis and increased virulence (34, 35). For 
further detailed descriptions about GBS virulence factors, we 
refer to recent reviews (36, 37).

ROUTES OF INFECTION

In EOD, GBS is usually transmitted from the colonized mater-
nal vaginal tract during birth to the infant. Aspiration of con-
taminated fluids allows for bacterial entry via the respiratory 
tract in many cases, resulting in sepsis or pneumonia during 
the first days of life (38). The route of infection in LOD is less 
well understood. The gastrointestinal tract is considered to be 
a natural reservoir for sepsis pathogens in neonates (39, 40). 
GBS shares this niche with Escherichia coli, the second typical 
organism in neonatal sepsis. Yet, the point of time when GBS 
establishes colonization is highly variable. 50–70% of colonized 
mothers transfer GBS to their offspring during delivery (41, 42) 
and 50% of infants which later developed LOD were colonized 
with GBS at birth (43). It remains unknown how many of these 
infants were stably colonized between the first contact with GBS 
and the disease onset. Unfortunately, large-scale and longitu-
dinal colonization data of mother-infant pairs before and after 
disease onset, which would allow resolving this LOD puzzle, 
are not available. In a case series, Carl et al. found that 7 out 
of 11 children with LOD by GBS, E. coli or Serratia marcescens 
produced at least one stool with the matching organism before 
bloodstream infection (39). However, only two infants with GBS 
sepsis contributed to this study and they showed a GBS positive 
stool only briefly before sepsis, indicating recent colonization 
or overgrowth in the gastrointestinal tract. Another longitudi-
nal case study on LOD also found that GBS occurred in the 
stool 2  days before sepsis onset (44). In contrast, it has been 
shown for other infections, e.g., enterococcal or staphylococcal 
bloodstream infections, that children often have a pathogen-
dominated gut flora before disease onset (44, 45). Thus, it is 
conceivable that GBS exposure constitutes a particular LOD 
risk to infants who failed to firmly establish GBS colonization 
after birth (46). However, it seems important to note that stool 
samples do not always adequately mirror the actual intestinal 
community (47).

Meningitis caused by serotype III strains is often linked to 
high-level bacteremia. Factors that enable serotype III strains 
to survive in the blood stream, i.e., escape of adaptive and 
innate immune mechanisms, such as antibody or complement-
mediated phagocytosis may be responsible for this effect (48). 
While the route of infection has not been resolved with certainty 
in infants, several studies showed bacterial dissemination to the 

blood and CNS after intraperitoneal (49), subcutaneous (50, 51)  
and intragastral (27, 52) inoculation of GBS serotype III in 
neonatal mice and rats. ST-17 is also specifically found in cases 
of GBS meningitis after 3 months of age (53), indicating that this 
clonal complex has an increased capability of overcoming colo-
nization site barriers and blood borne immunity and of invading  
the CNS.

THE NEONATAL MICROBIOME

The microbiome, defined as the microbial flora inhabiting the 
human body, constitutes an important factor in individual 
health and development. The composition of the microbiome is  
complex, distinct between individuals and subject to environ-
mental changes and adaptation to host factors. Each body site 
contains a unique microbial community. Even within one niche 
such as the skin the composition varies depending on the exact 
location, i.e., the back skin shows a different microbial signature 
than the foot pad or the axillary vault (54). It seems self-evident 
that exposure to bacteria in the birth canal impacts on the colo-
nizing flora in the infant. However, the fetus may be less sterile 
than thought, i.e., that the microbiome might develop already 
in  utero. 16S rDNA sequencing of amniotic fluid, placenta 
samples and meconium revealed prenatal presence of bacteria 
with a predominance of Escherichia spp. (9, 55, 56). Of note, 
the Streptococcus genus was also detected in these samples, yet 
at very low abundance (56). Intrauterine colonization data have 
to be interpreted with some caution, since microbial viability is 
usually not confirmed and the risk of contamination is high in 
many of the investigated samples (57). Accordingly, the contri-
bution of colonization in  utero to microbiome development is 
still unclear, whereas that of colonization after rupture of fetal 
membranes is beyond doubt. As an example, vaginal delivery 
and cesarean section result in different bacterial communities 
on skin, nares, and gingiva (9). Yet, the impact of the delivery 
mode on the expansion and functional diversification after 
the first 6 weeks of life is surprisingly modest (9, 58). Instead, 
the infant’s microbiome follows a rather predictable successive 
colonization pattern and reaches a stable state resembling the 
adult microbiome already at 1–3 years of age (59–61). Oxygen 
abundance in the neonatal gut facilitates the colonization by 
facultative anaerobes, e.g., Lactobacillus and Streptococcus fol-
lowed by Enterobacteriaceae. After oxygen is consumed and 
anaerobic conditions are established, obligate anaerobic species, 
e.g., Bifidobacterium, Bacteroides, and Clostridium spp. populate 
the intestine (62, 63). Administration of antibiotics, on the 
other hand, heavily affects the postnatal microbiome (8, 64, 65). 
Postnatal exposure to antibiotics alters the gut microbiome in the 
first 2–3 years of life by delaying microbiome development and 
altering phylogenetic diversity, e.g., affecting early colonization 
with Lactospiraceae spp. (8, 65). In addition, antibiotics reduce 
the stability of the microbiota composition as indicated by an 
increased variation between consecutive samples as compared 
to controls (65). Notably, very preterm infants with a gestational 
age of <33 weeks, who in many cases receive antibiotics within 
24  h of birth, showed a 10-fold reduced bacterial diversity in 
comparison to term infants (66).
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GBS AS PART OF THE HUMAN 
MICROBIOME

Streptococcus is, together with Lactobacillus, Staphylococcus, 
and Propionibacterium, one of the most commonly found bac-
terial genera in the neonatal intestine and oral cavity (9). Strep-
tococcal species account for up to 10% of total bacteria in fecal 
samples during the first months of life (67–69). In pregnant 
women, GBS colonization is found in up to 30% of rectovaginal 
samples (28, 70, 71) and stable colonization with the same clone 
for several years has been demonstrated (4, 70). Spread from 
the gastrointestinal tract to the genital tract is considered to be  
a probable colonization sequence for GBS (4). Since strains 
might be lost or reacquired in relatively short time periods  
(72, 73), GBS screening is recommended relatively late in preg-
nancy, i.e., between gestational weeks 35 and 37 (74).

Colonization by GBS is not exclusively confined to humans. 
Instead, GBS was first described in the 1880s as a cause of 
mastitis in goats and cows and it is a frequent commensal in 
seals and fish (75, 76). Although rare, invasive GBS disease can 
be a zoonotic disease as outbreaks in adults have been linked 
to raw fish consumption (77). Moreover, the hypervirulent 
ST-17 strain, which emerged 40 years ago, shares greater genetic 
similarity with bovine than with many human strains, indicat-
ing that it originated from a bovine lineage. Therefore, GBS 
may—under very specific conditions—cross species barriers 
(28, 78). However, since virulent strains in humans are distinct 
from those causing disease in animals (26, 75), person-to-person 
transmission plays the primary role in human GBS dissemina-
tion. Data on GBS spread are largely confined to mother-infant 
pairs. In contrast, the contribution of fecal-oral transmission 
by other family members than the mother to GBS colonization 
of the infant remains unclear. While strains are largely shared 
between sexual partners (79, 80), cohabitation appears to play a 
minor role in transmission (81).

Intrapartum antibiotic prophylaxis during delivery may 
transiently increase the GBS colonization risk of the infant yet 
probably does not affect the relative abundance of Streptococcus 
spp. in the stool beyond the first few weeks of life (72). While a 
number of studies longitudinally analyzed the development of 
the microbiome after birth on the level of phylum, class or order, 
studies on species or even genus level, e.g., with a specific focus 
on Group A Streptococcus (GAS) or GBS are rare and do not 
allow for robust statements on this level of resolution. Infants 
which were tested negative for GBS after IAP administration 
frequently acquire maternal GBS strains at later time points 
(82). Breast milk is hence a probable source of GBS in LOD. 
Several LOD case studies detected GBS in breast milk (46, 83). 
However, it is often unclear whether GBS in breast milk results 
from maternal colonization or infant oropharyngeal contamina-
tion. Mutated strains from infants which have been detected in 
the maternal breast milk (84) support the latter hypothesis. On 
the other hand, positive cultures of breast milk correspond to 
heavy colonization of the newborn (82), which is in turn a risk 
factor for LOD, especially in the case of mastitis (18). Bacterial 
expansion in breast milk and subsequent uptake by the infant 
may favor heavy colonization and LOD recurrences. Finally, 

nosocomial GBS transmission can occur in the case of children 
with invasive devices (82), indicating again that LOD can be a 
smear infection in some cases.

COMPETING MICROBES: GBS NEEDS  
TO FIND ITS (NEONATAL) NICHE

Although GBS is the most prevalent streptococcal strain in 
neonatal sepsis, other streptococci, notably Groups A, D, and G, 
are isolated from blood cultures of newborns as well (22, 85, 86).  
Indeed, the connection of GBS and neonatal sepsis was only 
found in the 1960s and its predominance was established in the 
1970s (24, 78). Prior to that, GAS and Streptococcus pneumoniae 
accounted for most neonatal sepsis cases (3, 87). As in other 
ecological niches, competition for nutrition and space occurs 
between bacterial species on colonized human body sites (88). 
Indeed, examples of mutual exclusion are found in the genus 
Streptococcus, e.g., in the case of Streptococcus mutans, the pre-
dominating cause of caries. The presence of other streptococcal 
species in the oral cavity, namely Streptococcus sanguinis and 
Streptococcus oligofermentans, is inversely correlated with the 
abundance of S. mutans which has been linked to the produc-
tion of hydrogen peroxide in vitro (89, 90). Another example is 
the observation that Corynebacterium and Dolosigranulum in 
the upper respiratory tract are protective against colonization 
with Streptococcus pneumonia, which causes otitis media in 
infants after colonization of the airways (91). More importantly 
in the context of this review, growth of GBS is inhibited by 
Streptococcus salivarius both in vitro and in a vaginal coloniza-
tion mouse model (92). Competitive growth was also shown for 
Bifidobacterium and GBS in vitro (93) and lactobacilli inhibited 
growth (94) and attachment of GBS to vaginal epithelial cells (95). 
In addition, Lactobacillus reuteri reduced vaginal colonization 
in a mouse model (96) and—importantly—as a probiotic in a 
placebo-controlled trial in pregnant women (97). These findings 
are in line with a very recent randomized, double-blind, placebo-
controlled trial from Indian, where Lactobacillus plantarum plus 
fructooligosaccharide protected newborns from sepsis (98).  
In general, however, the presence of GBS appears not to be linked 
to an abnormal microbiome or a reduction of the predominant 
Lactobacillus genus in the vaginal tract of the mother (99–101). 
Interestingly, a small study found significant taxonomic differ-
ences in stools of 6-month infants, when mothers were GBS 
carriers, as compared to non-carriers (102). Yet, robust epide-
miological evidence for a correlation of neonatal colonization 
with GBS and that of other specific intestinal commensals such 
as other streptococcal species is not existent.

Next to streptococci, staphylococci cause bacteremia and 
sepsis in newborns. Indeed, coagulase-negative staphylococci are 
the most common cause of nosocomial sepsis in newborns, yet 
do not play a role in healthy term infants. The generally more 
virulent S. aureus is isolated in variable frequency from neonatal 
blood cultures, but it is rarely found in cerebrospinal fluid (86). 
Furthermore, in view of the omnipresence of S. aureus as a colo-
nizer in up to 50% of neonates, infants of this age group are not 
specifically susceptible to staphylococcal infections, unless they 
are subject to medical interventions such as indwelling catheters 
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or surgery (85, 103). Hence, the contact with GBS and potentially 
other (beta-hemolytic) streptococci and the establishment of 
coexistence with these bacteria appears to impose a greater risk 
to the infant compared to other genii.

THE IMPACT OF ANTIBIOTIC PRESSURE 
AND RESISTANCE ON LOD

The majority of GBS strains isolated from humans are resistant 
to the antibiotic tetracycline. Indeed, the insertion of tetracy-
cline resistance (TcR) elements, i.e., the ribosomal protection 
proteins Tet(M) and Tet(O), in few GBS clones led to their 
selection and expansion after the onset of extensive tetracycline 
usage since 1948 (24). These clones have since replaced a prior 
diverse GBS population, concurrent with the rise of GBS as 
major cause of neonatal sepsis. Notably, TcR elements are the 
most widely spread resistance genes in the human gut micro-
biota (104). Moreover, a subset of GBS strains, especially ST-1,  
carry genes which confer general resistance to macrolids and 
lincosamides, i.e., the methylases erm(B) and erm(TR) (24). 
Resistance rates to clindamycin (lincosamid) and erythromy-
cin (macrolide) range up to 30 and 50%, respectively (30, 71, 
105, 106). A rise of resistance to fluoroquinolones has been 
described in serotype V strains (105, 107). In addition, GBS 
with reduced penicillin susceptibility due to mutations in the 
penicillin-binding proteins are isolated with increasing fre-
quencies in Japan (108, 109) and were also reported to occur 
spontaneously in an American patient after prolonged penicil-
lin treatment (110). In this context, it seems likely that the fre-
quent use of antibiotics other than tetracyclines may also lead 
to selection of hypervirulent strains. In the Netherlands, the 
incidence of EOD caused by ST-17 has significantly increased 
after implementation of a risk-based approach of antibiotic 
prophylaxis (15). ST-17 strains are also significantly more 
prevalent in women with IAP as compared to other strains 
(72). Thus, a relatively short course of intrapartum antibiotics, 
usually penicillin and ampicillin, may allow for seeding and 
expansion of hypervirulent GBS strains, which may not affect 
the majority of infants but propagate LOD development in few 
colonized individuals.

In addition, the capsular serotypes of GBS are not fixed but 
subject to frequent exchange by conjugative transfer between 
strains, explaining for the diversity of serotypes within clonal 
complexes. Lately, serotype IV has emerged as a causative agent 
of adult GBS disease in the US (106, 111). This seems important, 
as serotype IV is not included in the latest efforts in vaccine devel-
opment to capsular antigens of GBS. Sequencing has revealed 
that a predominating serotype IV strain acquired large genomic 
fragments by horizontal gene transfer from the hypervirulent 
ST-17 and ST-23 strains (112). Additionally, ST-17 strains with 
capsular switching to serotype IV have been identified in several 
countries (29, 113, 114). Since maternal antibodies can impact 
on colonization with the antibody-specific GBS strains in moth-
ers and early infants (115–117), it remains an open question 
whether targeting certain serotypes may eventually select for 

strains which have acquired novel capsule genes and allow for 
their expansion.

Interestingly, single-nucleotide polymorphisms (SNPs) in 
virulence-associated genes were detected in neonatal invasive 
GBS strains in comparison to the respective colonizing strains 
from the mothers, possibly contributing to the transition from 
a maternal commensal to a neonatal pathogen (84). This sug-
gests that mutations are positively selected for in the neonatal 
environment. Moreover, mutations in the virulence regulator 
CovR/S leading to hyperhemolytic activity were found in inva-
sive isolates of women in preterm labor (35). The acquisition of 
antibiotic resistance, serotype switching and SNPs can therefore 
lead to microevolution in the individual newborn, which may 
explain the pathogenicity of GBS in only a very small number 
of infants.

THE ROLE OF ANTIBIOTICS AND 
DYSBIOSIS IN THE DEVELOPMENT OF 
GBS SEPSIS

The microbiota may have beneficial but also detrimental, acute, 
and chronic effects on infant health. Dysbiosis may predispose 
the neonatal intestine to inflammation (63) and facilitate the 
expansion of otherwise infrequent pathobionts (118, 119). 
Dysbiosis with lower bacterial diversity and decreased density of 
Propionibacterium spp. was found to precede the onset of necrotiz-
ing enterocolitis (NEC) (120, 121). Moreover, lactate-producing 
bacilli such as staphylococci and streptococci were reduced after 
birth in infants with NEC (68). Even though the increased preva-
lence of opportunistic pathogens such as uropathogenic E. coli 
(122) and Clostridium perfringens (68) has been linked to NEC, 
a common bacterial signature has not been found (121, 123). In 
addition, it is often unclear whether dysbiosis and the develop-
ment of organ pathology are causally linked or whether they both 
depend on upstream disturbances, which may be diverse. Mai et al. 
found signs of dysbiosis in preterm infants already 2 weeks before 
onset of sepsis (124). Dysbiosis meant a delayed colonization with 
Proteobacteria and decreased density of Bifidobacteria spp. This 
observation receives support by the finding that Bifidobacterium 
spp. in the gut are protective for LOD (44), although the data on 
this issue are not fully consistent between studies (40). During 
sepsis, anaerobic Bacteroides and Bifidobacterium spp. were found 
to be decreased and aerobic Enterobacteria to be increased in 
affected infants as compared to non-septic twin controls (125). In 
view of these observations, a reduced intestinal Bifidobacterium 
density in infants whose mothers received IAP constitutes an 
important warning sign for the most careful usage of antibiot-
ics in this sensitive period (93). In support of this notion, the  
risk for LOD caused by various pathogens including GBS in 
preterm infants is threefold higher after prolonged empirical 
antibiotic treatment (126). Antibiotics can affect the composi-
tion of the microbiome in many ways, including the depletion 
of competitive microbes, a delay in immune cell maturation (see 
below) and dysbiosis, all of which widen the niche for pathogenic 
bacteria.
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CELLULAR INNATE IMMUNITY AND 
RESISTANCE TO GBS

Group B streptococcus is also recognized as an important health 
threat in immunocompromised adults, i.e., the elderly and 
patients with diabetes mellitus or HIV infections. Notably, the 
most common manifestations are skin/soft tissue infections and 
bacteremia (127–129), indicating that in these patients barrier 
immunity is important for the normal containment of GBS, 
similar to the situation in infants. The immaturity of the neonatal 
immune system in comparison to that of the adult was reviewed 
in detail elsewhere (130–132) and we will therefore focus on 
selected GBS-related aspects.

Neonatal rodents show exquisite sensitivity for GBS. Neonatal 
rats succumb to doses as low as 10 CFU intraperitoneally, while 
adult rats require approximately 6-log higher inoculums for a 
similar mortality rate (49) even if their body weight is taken into 
account (50). Neonatal mice, which normally die after i.p. infec-
tion within 48 h, were protected by transfer of specific antiserum 
to the pregnant dam before delivery (133). This experimental 
data is in line with the protective role of maternal GBS antibod-
ies in the protection from GBS EOD, which is the basis for the 
development of a maternal vaccine (36, 134). In contrast, the role 
of maternal antibodies in the prevention LOD development is 
less clear. Recently, it has been inferred that high antibody levels 
also prevent GBS colonization (42, 116, 117). Women with high 
serotype-specific titers had a significantly lower risk of rectovagi-
nal colonization with the respective GBS strains (42). However, 
GBS antibody levels do not inversely correlate with the sepsis 
risk per  se. Thus, it remains puzzling why only very few of the 
GBS exposed and/or colonized infants with low antibody levels 
develop LOD.

In the innate arm of the immune system, the family of 
Toll-like receptors (TLRs) is essential for the defense against 
invasive streptococcal infections. Children with genetic 
deficiency in MyD88, an essential adaptor for all TLRs but 
TLR3, or IRAK4, a kinase downstream of MyD88, have an 
approximately 50% risk of dying from invasive bacterial infec-
tions in the first 8 years of life. In most cases, streptococci are 
the causative organisms (135, 136). Furthermore, roughly one 
third of the affected children suffer from a sepsis episode in the 
first 3 months of life. Thus, the risk for early and late neonatal 
sepsis is approximately 1,000-fold higher in these infants than 
in newborn infants overall. It seems noteworthy that most 
isolates are either pneumococci or GAS, whereas only few 
cases of late neonatal sepsis and meningitis caused by GBS have 
been reported so far (135, 137). Whether this predominance 
of other streptococcal species is due to an altered microbiome 
in MyD88- and IRAK4-deficient individuals has not been 
explored so far. In mice with MyD88 deficiency, a gross devia-
tion in microbiome composition cannot be observed (138, 139),  
although a generally increased risk for the invasion and dis-
semination of intestinal commensals was observed (140). 
Moreover, MyD88-deficient neonatal mice have not been 
studied in this context. The already exceptional susceptibility 
of neonatal mice for local GBS infections, with a 100,000-fold 
decreased LD90 (cfu/g bw) in 2-day-old mice as compared to 

adult mice, is further significantly increased in MyD88 defi-
ciency (141, 142).

Within the MyD88-dependent TLR family, TLR2 activation 
by GBS lipoproteins (143, 144) and endosomal TLR-activation 
by single-stranded RNA are equally important. TLR13 is a com-
mon receptor of 16S rRNA from Gram-positive bacteria includ-
ing GBS in mice (10, 145), whereas TLR8 is the incomplete 
analog in humans (146–148). TLR recognition by myeloid cells 
is highly site-specific, i.e., RNA sensing and TLR13 are crucial 
for recognition of GBS by resident mouse macrophages but not 
circulating blood monocytes (142). Interestingly, recognition 
of GBS and Gram-positive bacteria appears to rely more on 
endosomal TLRs than recognition of Gram-negative bacteria 
(149). This seems intriguing in the context of human neonatal 
mononuclear cells, which are particularly responsive to TLR8 
ligands (150). Accordingly, recognition of bacterial RNA by 
TLRs is not only particularly important at the beginning of 
life, but may result in distinct immune activation patterns 
induced by Streptococcaceae and Enterobacteriaceae. It remains 
an appealing yet unproven hypothesis that TLR8-dependent 
immunopathology contributes to myeloid cell-mediated 
disturbance of mucocutaneous barrier integrity. In addition, 
TLR8 and 13 do not hold exclusive roles in the recognition 
of GBS RNA or nucleic acids in general. First, the NLRP3 
inflammasome mediates GBS-induced formation of IL-1β and 
IL-18 in macrophages via recognition of ssRNA (151, 152). 
NLRP3 activation requires the induction of potassium efflux 
by a rhamnolipid of GBS, which also mediates cytolysis (35). 
Proper inflammasome activation is essential for the neonatal 
resistance against GBS (151). Next, GBS DNA engages the 
cytosolic signaling of cGAS and STING which leads to inter-
feron (IFN)-β production and contributes to GBS immunity 
(153, 154). In addition, conventional dendritic cells secret type 
I IFNs in response to endosomal GBS RNA interacting with 
TLR7 (155). GBS may subvert nucleotide sensing via expression 
of ectonucleotidases (154, 156) (Figure 1). Similarly, the GBS 
hyaluronidase HylB blocks cellular activation by degrading host 
hyaluronic acid into fragments which bind and inhibit TLR2 
(157). HylB was shown to promote vaginal colonization and 
ascending infections in mice (157, 158). How these enzymes 
impact on the sensing of colonizing GBS and of competing bac-
teria in neonates is currently unclear. It furthermore remains 
to be determined how the relatively increased TRIF-dependent 
pathway in neonates impacts on barrier defense against GBS 
(159). Any effect can be assumed to be indirect, since TRIF is 
redundant in GBS-mediated activation of phagocytes, although 
a role as a signaling intermediate in other (immune) cells can-
not be excluded (149, 160).

Understanding the distinct TLR, inflammasome and cGAS 
engagement in the monocyte-macrophage lineage by GBS is of 
utmost importance, since macrophages are the dominant resi-
dent immune cells at mucocutaneous barriers, i.e., the dermis 
and the gut. They are crucially involved in barrier maintenance 
(161, 162), both by executing direct antimicrobial actions and by 
cytokine and chemokine dependent recruitment and activation 
of other immune cells. Development of the neonatal macrophage 
compartment is particularly well understood in the neonatal 



FIGURE 1 | Innate immune pathways manipulated by Group B Streptococcus. Depicted is the impact of GBS on type I interferons (IFN) (153, 155), Toll-like  
receptor (TLR) (10, 149), and inflammasome (151) pathways by secreted bacterial factors. The ectonucleotidase CdnP hydrolyzes bacterial cyclic dinucleotides 
which otherwise activate STING and IFN-β production (154). Hemolysin contributes as second signal to the NLRP3 inflammasome activation (152). The GBS 
hyaluronidase can degrade pro-inflammatory hyaluronan polymers during tissue injury which normally bind to TLR2 and the resulting fragments block TLR2 signaling 
in the host (157).

FIGURE 2 | Stabilization of the mucocutaneous niche. During homeostasis, GBS colonizes the intestine of healthy infants. Macrophages and other immune cells 
guarantee barrier integrity by surveillance. Other commensal bacteria including streptococcal species form the niche. Disease can be preceded by multiple factors 
leading to dysbiosis, expansion of GBS and barrier disruption. Expression of virulence factors such as HvgA and β-toxin facilitate adhesion to epithelial cells and 
barrier disruption. Dissemination is often concurrent with mutations of the CovR/S virulence repressor.
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intestine, where the population of embryonic macrophages is 
replaced by monocyte-derived macrophages starting at weaning 
(163). It is tempting to speculate that macrophage maturation 
in the lamina propria directly impacts on the macrophage-
driven recognition and elimination of invading GBS. Another 
TLR-based mechanism promoting susceptibility to GBS is the 
increased production of anti-inflammatory cytokines. Enhanced 

IL-10 concentrations in serum and cord blood are correlated 
with mortality in septic infants (164). Moreover, IL-10 has a 
major impact on intestinal barrier immunity, both in humans 
and mice. Yet, whereas too little IL-10 leads to spontaneous 
inflammation and colitis, increased IL-10 production impairs 
neutrophil recruitment into infected organs and thus decreases 
GBS clearance (164, 165). How increased IL-10 formation 



8

Kolter and Henneke Neonatal Immune and Microbiome Codevelopment

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1497

impacts on keeping GBS in a colonization—as opposed to an 
invasion—state is currently not known.

IMPACT OF THE MICROBIOME ON THE 
DEVELOPING IMMUNITY

Numerous studies were initiated to understand the impact of 
the colonizing flora on the function of intestinal cells in general 
and the immune system in general. Research is usually based on 
germ-free mice and antibiotic treatments in order to understand 
the consequences of a reduction or absence of microorganisms. 
Evidence for immunological consequences of alterations in the 
microbiome was even found in cells very distant to the gastroin-
testinal tract such as brain microglia (166). In a highly interesting 
mouse study, exposure of the pregnant dam to antibiotics not only 
led to neutropenia in newborn mice, but subsequently increased 
the susceptibility to Gram-negative sepsis (10). A reduction in 
Gammaproteobacteria may mediate these effects, since their 
effector LPS induces granulocyte colony-stimulating factor pro-
duction and consequently granulopoiesis. Recently, Josefsdottir 
et al. suggested that the microbiota is the cause of neutropenia 
and general depletion of hematopoietic stem cells across multiple 
lineages in antibiotic-treated mice (11). The phenotype could be 
partially rescued by fecal transfer. This experimental data is in 
line with the observation that administration of ceftalorine and 
β-lactam antibiotics can lead to neutropenia in patients (167, 
168). Consequently, antibiotics appear to indirectly impact on 
the maturation of the immune response (169) and the resistance 
against neonatal sepsis pathogens. An overall smaller granulo-
cyte pool in neonates (132) may further propagate the negative 
effects of antibiotics. Therefore, it seems that the immaturity of 
neonatal blood cells, including phagocytes and adaptive immune 
cells, might restrict the ability to fight off pathogens. Hence, in 
the stochastic event of pathogen invasion through the muco-
cutaneous barrier, which may be potently responded to by the 
adult immune system, neonatal immunity may be overwhelmed, 
resulting in bacterial spread and sepsis (Figure  2). It remains 
incompletely understood whether the protection in the adult 
usually involves the resident immune cells at mucocutaneous 
sites, e.g., the lamina propria in the gut or the dermis in the skin, 
or whether circulating leukocytes are necessary for efficient bar-
rier defense.

CONCLUSION

The challenge to understand and ultimately prevent neonatal 
GBS sepsis comprises (i) the control of GBS transmission dur-
ing and immediately after birth leading to EOD and (ii) the 
sub  sequent control of GBS as a mucocutaneous colonizer, when 
failure results in LOD. Whereas high maternal antibody titers, 
as induced by GBS vaccines, and IAP are established strategies 
to prevent EOD, similar strategies with proven efficacy for LOD 
reduction are missing. Based on experimental and observa-
tional evidence, it seems worth considering—and thus requires 
careful studies—whether antibiotic pressure during primary 
colonization of the intestine facilitates dysbiosis on the strain 
level and transient immunodeficiency in the individual child. 
Furthermore, capsular polysaccharide based vaccines may select 
for serotype-switched virulent strains as observed with ST-17 
and allow for the expansion of other β-hemolytic streptococci 
than GBS.

The vast recent gain in knowledge on the coevolution of 
microbiome and cellular barrier defense make the design of novel 
approaches for neonatal sepsis prevention conceivable, although 
much preclinical work remains to be done first. Examples are 
designer probiotics, containing—among others—strains which 
occupy the streptococcal niche without risk of invasion. Immu-
nomodulators that accelerate the maturation of the phagocyte 
population resident at mucocutaneous sites may be another 
strategy that holds potential. Yet, the variable conditions and 
demands at the beginning of life, e.g., that of very preterm infants 
or those requiring antibiotic therapy early on, make one-fits-all 
solutions to the neonatal sepsis conundrum unlikely and rather 
ask for individualized approaches.
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